We construct infinitely many compact, smooth 4-manifolds which are homotopy equivalent to $$S^{2}$$ but do not admit a spine (that is, a piecewise linear embedding of $$S^{2}$$ that realizes the homotopy equivalence). This is the remaining case in the existence problem for codimension-2 spines in simply connected manifolds. The obstruction comes from the Heegaard Floer $$d$$ invariants.
more »
« less
Bounds on Cheeger–Gromov invariants and simplicial complexity of triangulated manifolds
.We show the existence of linear bounds on Wall 𝜌-invariants of PL manifolds, employing a new combinatorial concept of 𝐺-colored polyhedra. As an application, we show how the number of h-cobordism classes of manifolds simple homotopy equivalent to a lens space with 𝑉 simplices and the fundamental group of Z n grows in 𝑉. Furthermore, we count the number of homotopy lens spaces with bounded geometry in 𝑉. Similarly, we give new linear bounds on Cheeger–Gromov 𝜌-invariants of PL manifolds endowed with a faithful representation also. A key idea is to construct a cobordism with a linear complexity whose boundary is π 1 -injectively embedded, using relative hyperbolization. As an application, we study the complexity theory of high-dimensional lens spaces. Lastly, we show the density of 𝜌-invariants over manifolds homotopy equivalent to a given manifold for certain fundamental groups. This implies that the structure set is not finitely generated.
more »
« less
- Award ID(s):
- 2105451
- PAR ID:
- 10626792
- Publisher / Repository:
- de Gruyter
- Date Published:
- Journal Name:
- Journal für die reine und angewandte Mathematik (Crelles Journal)
- Volume:
- 0
- Issue:
- 0
- ISSN:
- 0075-4102
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract In this paper, we introduce and study representation homology of topological spaces, which is a natural homological extension of representation varieties of fundamental groups. We give an elementary construction of representation homology parallel to the Loday–Pirashvili construction of higher Hochschild homology; in fact, we establish a direct geometric relation between the two theories by proving that the representation homology of the suspension of a (pointed connected) space is isomorphic to its higher Hochschild homology. We also construct some natural maps and spectral sequences relating representation homology to other homology theories associated with spaces (such as Pontryagin algebras, $${{\mathbb{S}}}^1$$-equivariant homology of the free loop space, and stable homology of automorphism groups of f.g. free groups). We compute representation homology explicitly (in terms of known invariants) in a number of interesting cases, including spheres, suspensions, complex projective spaces, Riemann surfaces, and some 3-dimensional manifolds, such as link complements in $${\mathbb{R}}^3$$ and the lens spaces $ L(p,q) $. In the case of link complements, we identify the representation homology in terms of ordinary Hochschild homology, which gives a new algebraic invariant of links in $${\mathbb{R}}^3$$.more » « less
-
We show that for every odd prime $$q$$, there exists an infinite family~$$\{M_i\}_{i=1}^{\infty}$$ of topological 4-manifolds that are all stably homeomorphic to one another, all the manifolds $$M_i$$ have isometric rank one equivariant intersection pairings and boundary $$L(2q, 1) \# (S^1 \times S^2)$$, but they are pairwise not homotopy equivalent via any homotopy equivalence that restricts to a homotopy equivalence of the boundary.more » « less
-
We apply Menke’s JSJ decomposition for symplectic fillings to several families of contact 3-manifolds. Among other results, we complete the classification up to orientation-preserving diffeomorphism of strong symplectic fillings of lens spaces. We show that exact symplectic fillings of contact manifolds obtained by surgery on certain Legendrian negative cables are the result of attaching a Weinstein 2-handle to an exact filling of a lens space. For large families of contact structures on Seifert fibered spaces over , we reduce the problem of classifying exact symplectic fillings to the same problem for universally tight or canonical contact structures. Finally, virtually overtwisted circle bundles over surfaces with genus greater than one and negative twisting number are seen to have unique exact fillings.more » « less
-
For separable ‐algebras and , we define a topology on the set consisting of homotopy classes of asymptotic morphisms from to . This gives an enrichment of the Connes–Higson asymptotic category over topological spaces. We show that the Hausdorffization of this category is equivalent to the shape category of Dadarlat. As an application, we obtain a topology on the ‐theory group with properties analogous to those of the topology on . The Hausdorffized ‐theory group is also introduced and studied. We obtain a continuity result for the functor , which implies a new continuity result for the functor.more » « less
An official website of the United States government

