Guaranteeing runtime integrity of embedded system software is an open problem. Trade-offs between security and other priorities (e.g., cost or performance) are inherent, and resolving them is both challenging and important. The proliferation of runtime attacks that introduce malicious code (e.g., by injection) into embedded devices has prompted a range of mitigation techniques. One popular approach is Remote Attestation (RA), whereby a trusted entity (verifier) checks the current software state of an untrusted remote device (prover). RA yields a timely authenticated snapshot of prover state that verifier uses to decide whether an attack occurred. Current RA schemes require verifier to explicitly initiate RA, based on some unclear criteria. Thus, in case of prover's compromise, verifier only learns about it late, upon the next RA instance. While sufficient for compromise detection, some applications would benefit from a more proactive, prevention-based approach. To this end, we construct CASU: Compromise Avoidance via Secure Updates. CASU is an inexpensive hardware/software co-design enforcing: (i) runtime software immutability, thus precluding any illegal software modification, and (ii) authenticated updates as the sole means of modifying software. In CASU, a successful RA instance serves as a proof of successful update, and continuous subsequent software integrity is implicit, due to the runtime immutability guarantee. This obviates the need for RA in between software updates and leads to unobtrusive integrity assurance with guarantees akin to those of prior RA techniques, with better overall performance.
more »
« less
Proactive Runtime Detection of Aging-Related Silent Data Corruptions: A Bottom-Up Approach
Recent advancements in semiconductor process technologies have unveiled the susceptibility of hardware circuits to reliability issues, especially those related to transistor aging. Transistor aging gradually degrades gate performance, eventually causing hardware to behave incorrectly. Such misbehaving hardware can result in silent data corruptions (SDCs) in software---a type of failure that comes without logs or exceptions, but causes miscomputing instructions, bitflips, and broken cache coherency. Alas, while design efforts can be made to mitigate transistor aging, complete elimination of this problem during design and fabrication cannot be guaranteed. This emerging challenge calls for a mechanism that not only detects potentially aged hardware in the field, but also triggers software mitigations at application runtime. We propose Vega, a novel workflow that allows efficient detection of aging-related failures at software runtime. Vega leverages the well-studied gate-level modeling of aging effects to identify susceptible signal propagation paths that could fail due to transistor aging. It then utilizes formal verification techniques to generate short test cases that activate these paths and detect any failure within them. Vega integrates the test cases into a user application by directly fusing them together, or by packaging the test cases into a library that the application can invoke. We demonstrate our proposed techniques on the arithmetic logic unit and floating-point unit of a RISC-V CPU. We show that Vega generates effective test cases and integrates them into applications with an average of 0.8% performance overhead.
more »
« less
- Award ID(s):
- 2321490
- PAR ID:
- 10627157
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400703911
- Page Range / eLocation ID:
- 220 to 235
- Format(s):
- Medium: X
- Location:
- Hilton La Jolla Torrey Pines La Jolla CA USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The need for high-performance and low-power acceleration technologies in servers is driving the adoption of PCIe-connected FPGAs in datacenter environments. However, the co-development of the application software, driver, and hardware HDL for server FPGA platforms remains one of the fundamental challenges standing in the way of wide-scale adoption. The FPGA accelerator development process is plagued by a lack of comprehensive full-system simulation tools, unacceptably slow debug iteration times, and limited visibility into the software and hardware at the time of failure. In this work, we develop a framework that pairs a virtual machine and an HDL simulator to enable full-system co-simulation of a server system with a PCIe-connected FPGA. Our framework enables rapid development and debugging of unmodified application software, operating system, device drivers, and hardware design. Once debugged, neither the software nor the hardware requires any changes before being deployed in a production environment. In our case studies, we find that the co-simulation framework greatly improves debug iteration time while providing invaluable visibility into both the software and hardware components.more » « less
-
The methodology and standardization layer provided by the Performance Application Programming Interface (PAPI) has played a vital role in application profiling for almost two decades. It has enabled sophisticated performance analysis tool designers and performance-conscious scientists to gain insights into their applications by simply instrumenting their code using a handful of PAPI functions that “just work” across different hardware components. In the past, PAPI development had focused primarily on hardware-specific performance metrics. However, the rapidly increasing complexity of software infrastructure poses new measurement and analysis challenges for the developers of large-scale applications. In particular, acquiring information regarding the behavior of libraries and runtimes—used by scientific applications—requires low-level binary instrumentation, or APIs specific to each library and runtime. No uniform API for monitoring events that originate from inside the software stack has emerged. In this article, we present our efforts to extend PAPI’s role so that it becomes the de facto standard for exposing performance-critical events, which we refer to as software-defined events (SDEs), from different software layers. Upgrading PAPI with SDEs enables monitoring of both types of performance events—hardware- and software-related events—in a uniform way, through the same consistent PAPI. The goal of this article is threefold. First, we motivate the need for SDEs and describe our design decisions regarding the functionality we offer through PAPI’s new SDE interface. Second, we illustrate how SDEs can be utilized by different software packages, specifically, by showcasing their use in the numerical linear algebra library MAGMA-Sparse, the tensor algebra library TAMM that is part of the NWChem suite, and the compiler-based performance analysis tool Byfl. Third, we provide a performance analysis of the overhead that results from monitoring SDEs and discuss the trade-offs between overhead and functionality.more » « less
-
Many Cyber-Physical Systems (CPS) have timing constraints that must be met by the cyber components (software and the network) to ensure safety. It is a tedious job to check if a CPS meets its timing requirement especially when they are distributed and the software and/or the underlying computing platforms are complex. Furthermore, the system design is brittle since a timing failure can still happen e.g., network failure, soft error bit flip, etc. In this paper, we propose a new design methodology called Plan B where timing constraints of the CPS are monitored at the runtime, and a proper backup routine is executed when a timing failure happens to ensure safety. We provide a model on how to express the desired timing behavior using a set of timing constructs in a C/C++ code and how to efficiently monitor them at the runtime. We showcase the effectiveness of our approach by conducting experiments on three case studies: 1) the full software stack for autonomous driving (Apollo), 2) a multi-agent system with 1/10th scale model robots, and 3) a quadrotor for search and rescue application. We show that the system remains safe and stable even when intentional faults are injected to cause a timing failure. We also demonstrate that the system can achieve graceful degradation when a less extreme timing failure happens.more » « less
-
Integrated circuit (IC) camouflaging has emerged as a promising solution for protecting semiconductor intellectual property (IP) against reverse engineering. Existing methods of camouflaging are based on standard cells that can assume one of many Boolean functions, either through variation of transistor threshold voltage or contact configurations. Unfortunately, such methods lead to high area, delay and power overheads, and are vulnerable to invasive as well as non-invasive attacks based on Boolean satisfiability/VLSI testing. In this paper, we propose, fabricate, and demonstrate a new cell camouflaging strategy, termed as ‘covert gate’ that leverages doping and dummy contacts to create camouflaged cells that are indistinguishable from regular standard cells under modern imaging techniques. We perform a comprehensive security analysis of covert gate, and show that it achieves high resiliency against SAT and test-based attacks at very low overheads. We also derive models to characterize the covert cells, and develop measures to incorporate them into a gate-level design. Simulation results of overheads and attacks are presented on benchmark circuits.more » « less
An official website of the United States government

