Abstract Architected Instability-based Metamaterials (AIMs) composed of curved beams can exhibit multi-stable geometric phase transformations. By tailoring geometry and topology, AIMs can accommodate large reversible deformations while dissipating energy beyond the capabilities of conventional materials. These exceptional mechanical properties are attractive for aerospace engineering applications, including energy-absorbing components in landing gears, impact-resistant protective structures, and vibration-damping systems. Nevertheless, this very mechanism that enables reversible energy dissipation also limits its capacity, because geometric phase transformations like snap-through buckling occur at low specific strength. Thus, the reversible energy dissipation capability cannot be easily leveraged in aerospace applications. In this work, we propose a theoretical and numerical modeling integrated approach to manipulate the out-of-plane stiffness distribution of curved beams. Compared to the conventional AIMs with uniform curved beams, the strength of the proposed beam configuration can be largely improved, while the local maximum strain remained relatively lower during phase transformations. Finite element analysis and experiments show this approach mitigates the local strain concentration effects of AIMs. Without inducing unreversible plastic deformation, the mechanical properties like the maximum peak strength, trapped energy during compression, and energy dissipation under cyclic loading can be increased by 62.1%, 82.5%, and 45.6%, respectively.
more »
« less
Investigation of scalable chiral metamaterial beams for combined stiffness and supplemental energy dissipation
Abstract Metamaterials have gained important interest in the research community attributable to advances in additive manufacturing enabling their fabrication at reasonable costs. The vast majority of their applications and demonstrations are at micro- and nano-scales, and challenges remained regarding the larger scale applications. In this paper, we are interested by the scalability of metamaterials, targeting structural engineering applications. To do so, we explore mechanisms capable of providing both bending stiffness and high-performance energy dissipation. Our study includes beams constructed with chiral topologies of different structural hierarchy orders, and we also explore three new topologies that we termed chiral friction, chiral-rectangular and chiral-hexagonal design to engineer the beams and the use of friction rods with tunable post-stress that inserted longitudinally through the beams to provide enhanced friction. The mechanical performance of the metamaterial beams is characterized through a series three-point bending tests. Of interest is to evaluate the bending stiffness, shape recoverability, and energy dissipation capabilities. We find that the chiral-hexagonal topology equipped with a non-stressed friction rod exhibit excellent energy dissipation capabilities, showing an improved loss factor by 11.9 times compared to the control beam using 68% of its materials density. Moreover, the use of the post-stress mechanism shows that it is possible to augment both its shape recovery and bending stiffness up to 99.3% and 47.1%, respectively. Overall, our investigation shows that it is possible to engineer scalable metamaterial beams targeting structural engineering applications, and that the use of topology optimization and strategically designed post-tensioning mechanism can allow tuning of mechanical performance.
more »
« less
- Award ID(s):
- 2349792
- PAR ID:
- 10627168
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- Smart Materials and Structures
- Volume:
- 33
- Issue:
- 11
- ISSN:
- 0964-1726
- Page Range / eLocation ID:
- 115051
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Mechanical metamaterials are architected manmade materials that allow for unique behaviors not observed in nature, making them promising candidates for a wide range of applications. Existing metamaterials lack tunability as their properties can only be changed to a limited extent after the fabrication. Herein, a new magneto‐mechanical metamaterial is presented that allows great tunability through a novel concept of deformation mode branching. The architecture of this new metamaterial employs an asymmetric joint design using hard‐magnetic soft active materials that permits two distinct actuation modes (bending and folding) under opposite‐direction magnetic fields. The subsequent application of mechanical compression leads to the deformation mode branching where the metamaterial architecture transforms into two distinctly different shapes, which exhibit very different deformations and enable great tunability in properties such as mechanical stiffness and acoustic bandgaps. Furthermore, this metamaterial design can be incorporated with magnetic shape memory polymers with global stiffness tunability, which also allows for the global shift of the acoustic behaviors. The combination of magnetic and mechanical actuations, as well as shape memory effects, impart wide tunable properties to a new paradigm of metamaterials.more » « less
-
Abstract A digitally encoded mechanical metamaterial utilizing selective insertion of rigid elements into an elastomeric matrix achieves programmable stiffness based on geometric patterns. Beyond the linear behavior, interests are developed towards the nonlinear stiffness region to extend the application of such metamaterials from vibration isolation to shock mitigation. A 12-unit-cell prototype is constructed and experimentally characterized under compression and drop tests, yielding the stress-strain curves and energy absorption capabilities of all independent geometric patterns identified, respectively, with validation by finite-element analysis. The versatility of the metamaterial is illustrated via a categorization of its pattern-dependent responses.more » « less
-
Abstract For artificial materials, desired properties often conflict. For example, engineering materials often achieve high energy dissipation by sacrificing resilience and vice versa, or desired auxeticity by losing their isotropy, which limits their performance and applications. To solve these conflicts, a strategy is proposed to create novel mechanical metamaterial via 3D space filling tiles with engaging key‐channel pairs, exemplified via auxetic 3D keyed‐octahedron–cuboctahedron metamaterials. This metamaterial shows high resilience while achieving large mechanical hysteresis synergistically under large compressive strain. Especially, this metamaterial exhibits ideal isotropy approaching the theoretical limit of isotropic Poisson's ratio, ‐1, as rarely seen in existing 3D mechanical metamaterials. In addition, the new class of metamaterials provides wide tunability on mechanical properties and behaviors, including an unusual coupled auxeticity and twisting behavior under normal compression. The designing methodology is illustrated by the integral of numerical modeling, theoretical analysis, and experimental characterization. The new mechanical metamaterials have broad applications in actuators and dampers, soft robotics, biomedical materials, and engineering materials/systems for energy dissipation.more » « less
-
Abstract Maxwell lattices possess distinct topological states that feature mechanically polarized edge behaviors and asymmetric dynamic responses protected by the topology of their phonon bands. Until now, demonstrations of non‐trivial topological behaviors from Maxwell lattices have been limited to fixed configurations or have achieved reconfigurability using mechanical linkages. Here, a monolithic transformable topological mechanical metamaterial is introduced in the form of a generalized kagome lattice made from a shape memory polymer (SMP). It is capable of reversibly exploring topologically distinct phases of the non‐trivial phase space via a kinematic strategy that converts sparse mechanical inputs at free edge pairs into a biaxial, global transformation that switches its topological state. All configurations are stable in the absence of confinement or a continuous mechanical input. Its topologically‐protected, polarized mechanical edge stiffness is robust against broken hinges or conformational defects. More importantly, it shows that the phase transition of SMPs that modulate chain mobility, can effectively shield a dynamic metamaterial's topological response from its own kinematic stress history, referred to as “stress caching”. This work provides a blueprint for monolithic transformable mechanical metamaterials with topological mechanical behavior that is robust against defects and disorder while circumventing their vulnerability to stored elastic energy, which will find applications in switchable acoustic diodes and tunable vibration dampers or isolators.more » « less
An official website of the United States government
