skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Predicting the number density of heavy seed massive black holes due to an intense Lyman-Werner field
The recent detections of a large number of candidate active galactic nuclei at high redshift (i.e.  z 4 ) has increased speculation that heavy seed massive black hole formation may be a required pathway. Here we re-implement the so-called Lyman-Werner (LW) channel model of Dijkstra et al. (2014) to calculate the expected number density of massive black holes formed through this channel. We further enhance this model by extracting information relevant to the model from the 𝚁𝚎𝚗𝚊𝚒𝚜𝚜𝚊𝚗𝚌𝚎 simulation suite. 𝚁𝚎𝚗𝚊𝚒𝚜𝚜𝚊𝚗𝚌𝚎 is a high-resolution suite of simulations ideally positioned to probe the high- z universe. Finally, we compare the LW-only channel against other models in the literature. We find that the LW-only channel results in a peak number density of massive black holes of approximately at z 10 . Given the growth requirements and the duty cycle of active galactic nuclei, this means that the LW-only is likely incompatible with recent JWST measurements and can, at most, be responsible for only a small subset of high- z active galactic nuclei. Other models from the literature (e.g. rapid assembly; relative velocities between baryons and dark matter) seem therefore better positioned, at present, to explain the high frequency of massive black holes at high z more » « less
Award ID(s):
2009309
PAR ID:
10627203
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
The Open Journal of Astrophysics
Date Published:
Journal Name:
The Open Journal of Astrophysics
Volume:
8
ISSN:
2565-6120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Incoherent J / ψ photoproduction in heavy ion ultraperipheral collisions (UPCs) provides a sensitive probe of localized, fluctuating gluonic structures within heavy nuclei. This Letter reports the first measurement of the photon-nucleon center-of-mass energy ( W γ N ) dependence of this process in PbPb UPCs at a nucleon-nucleon center-of-mass energy of 5.02 TeV, using 1.52 nb 1 of data recorded by the CMS experiment. The measurement covers a wide W γ N range of 40 400 GeV , probing gluons carrying a fraction x of nucleon momentum down to an unexplored regime of 6.5 × 10 5 . Compared to baseline predictions neglecting nuclear effects, the measured cross sections exhibit significantly greater suppression at lower x . Additionally, the ratio of incoherent to coherent photoproduction is found to be constant across the probed W γ N and x range, disfavoring the establishment of the black disk limit. This Letter provides critical insights into the x -dependent evolution of fluctuating gluonic structures within nuclei and calls for further advancements in theoretical models incorporating nuclear shadowing and gluon saturation. 
    more » « less
  2. We present spectroscopic confirmation of an ultra-massive galaxy (UMG) with log ( M / M ) = 10.98 ± 0.07 at z s p e c = 4.8947 in the Extended Groth Strip (EGS), based on deep observations of Ly α emission with Keck/DEIMOS. The ultra-massive galaxy (UMG-28740) is the most massive member in one of the most significant overdensities in the EGS, with four additional photometric members with log ( M / M ) > 10.5 within R p r o j 1 cMpc. Spectral energy distribution (SED) fitting using a large suite of star formation histories and two sets of high-quality photometry from ground- and space-based facilities consistently estimates the mass of this object to be log ( M / M ) 11 with a small standard deviation between measurements ( σ = 0.07 ). While the best-fit SED models agree on stellar mass, we find discrepancies in the estimated star formation rate for UMG-28740, resulting in either a star-forming or quiescent system. 𝐽 𝑊 𝑆 𝑇 /NIRCam photometry of UMG-28740 strongly favors a quiescent scenario, demonstrating the need for high-quality mid-IR observations. Assuming the galaxy to be quiescent, UMG-28740 formed the bulk of its stars at z > 10 and is quenching at z 8 , resulting in a high star formation efficiency at high redshift ( ϵ 0.2 at z 5 and ϵ 1 at z 8 ). As the most massive galaxy in its protocluster environment, UMG-28740 is a unique example of the impossibly early galaxy problem. 
    more » « less
  3. We present results of a search for spin-independent dark matter-nucleus interactions in a 1 cm 2 by 1 mm thick (0.233 g) high-resolution silicon athermal phonon detector operated above ground. For interactions in the substrate, this detector achieves an rms baseline energy resolution of 361.5 ( 4 ) m eV (statistical error), the best for any athermal phonon detector to date. With an exposure of 0.233 g × 12 hours, we place the most stringent constraints on dark matter masses between 44 and 87 M eV / c 2 , with the lowest unexplored cross section of 4 × 10 32 c m 2 at 87 M eV / c 2 . We employ a conservative salting technique to reach the lowest dark matter mass ever probed via direct detection experiment. This constraint is enabled by two-channel rejection of low energy backgrounds that are coupled to individual sensors. 
    more » « less
  4. The polarization of the Λ and Λ ¯ hyperons along the beam direction has been measured in proton-lead ( p -Pb ) collisions at a center-of-mass energy per nucleon pair of 8.16 TeV. The data were obtained with the CMS detector at the LHC and correspond to an integrated luminosity of 186.0 ± 6.5 nb 1 . A significant azimuthal dependence of the hyperon polarization, characterized by the second-order Fourier sine coefficient P z , s 2 , is observed. The P z , s 2 values decrease as a function of charged particle multiplicity, but increase with transverse momentum. A hydrodynamic model that describes the observed P z , s 2 values in nucleus-nucleus collisions by introducing vorticity effects does not reproduce either the sign or the magnitude of the p -Pb results. These observations pose a challenge to the current theoretical implementation of spin polarization in heavy ion collisions and offer new insights into the origin of spin polarization in hadronic collisions at LHC energies. 
    more » « less
  5. We present a joint analysis of the cosmic microwave background (CMB) lensing power spectra measured from the Data Release 6 of the Atacama Cosmology Telescope (ACT) and PR4, cross-correlations between the ACT and lensing reconstruction and galaxy clustering from unWISE, and the unWISE clustering auto-spectrum. We obtain 1.5% constraints on the matter density fluctuations at late times parametrized by the best constrained parameter combination S 8 3 x 2 pt σ 8 ( Ω m / 0.3 ) 0.4 = 0.815 ± 0.012 . The commonly used S 8 σ 8 ( Ω m / 0.3 ) 0.5 parameter is constrained to S 8 = 0.816 ± 0.015 . In combination with baryon acoustic oscillation (BAO) measurements we find σ 8 = 0.815 ± 0.012 . We also present sound-horizon-independent estimates of the present day Hubble rate of H 0 = 66.4 3.7 + 3.2 km s 1 Mpc 1 from our large scale structure data alone and H 0 = 64.3 2.4 + 2.1 km s 1 Mpc 1 in combination with uncalibrated supernovae from . Using parametric estimates of the evolution of matter density fluctuations, we place constraints on cosmic structure in a range of high redshifts typically inaccessible with cross-correlation analyses. Combining lensing cross- and autocorrelations, we derive a 3.3% constraint on the integrated matter density fluctuations above z = 2.4 , one of the tightest constraints in this redshift range and fully consistent with a Λ cold dark matter ( Λ CDM ) model fit to the primary CMB from . Finally, combining with primary CMB observations and using the extended low redshift coverage of these combined datasets we derive constraints on a variety of extensions to the Λ CDM model including massive neutrinos, spatial curvature, and dark energy. We find in flat Λ CDM m ν < 0.12 eV at 95% confidence using the large scale structure data, BAO measurements from Sloan Digital Sky Survey, and primary CMB observations. 
    more » « less