skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: EvaNet: Elevation-Guided Flood Extent Mapping on Earth Imagery
Accurate and timely mapping of flood extent from high-resolution satellite imagery plays a crucial role in disaster management such as damage assessment and relief activities. However, current state-of-the-art solutions are based on U-Net, which cannot segment the flood pixels accurately due to the ambiguous pixels (e.g., tree canopies, clouds) that prevent a direct judgement from only the spectral features. Thanks to the digital elevation model (DEM) data readily available from sources such as United States Geological Survey (USGS), this work explores the use of an elevation map to improve flood extent mapping. We propose, EvaNet, an elevation-guided segmentation model based on the encoder-decoder architecture with two novel techniques: (1) a loss function encoding the physical law of gravity that if a location is flooded (resp. dry), then its adjacent locations with a lower (resp. higher) elevation must also be flooded (resp. dry); (2) a new (de)convolution operation that integrates the elevation map by a location-sensitive gating mechanism to regulate how much spectral features flow through adjacent layers. Extensive experiments show that EvaNet significantly outperforms the U-Net baselines, and works as a perfect drop-in replacement for U-Net in existing solutions to flood extent mapping. EvaNet is open-sourced at https://github.com/MTSami/EvaNet  more » « less
Award ID(s):
2414185
PAR ID:
10627388
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
IJCAI
Date Published:
Format(s):
Medium: X
Location:
Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI)
Sponsoring Org:
National Science Foundation
More Like this
  1. The accurate and prompt mapping of flood-affected regions is important for effective disaster management, including damage assessment and relief efforts. While high-resolution optical imagery from satellites during disasters presents an opportunity for automated flood inundation mapping, existing segmentation models face challenges due to noises such as cloud cover and tree canopies. Thanks to the digital elevation model (DEM) data readily available from sources such as United States Geological Survey (USGS), terrain guidance was utilized by recent graphical models such as hidden Markov trees (HMTs) to improve segmentation quality. Unfortunately, these methods either can only handle a small area where water levels at different locations are assumed to be consistent or require restricted assumptions such as there is only one river channel. This article presents an algorithm for flood extent mapping on large-scale Earth imagery, applicable to a large geographic area with multiple river channels. Since water level can vary a lot from upstream to downstream, we propose to detect river pixels to partition the remaining pixels into localized zones, each with a unique water level. In each zone, water at all locations flows to the same river entry point. Pixels in each zone are organized by an HMT to capture water flow directions guided by elevations. Moreover, a novel regularization scheme is designed to enforce inter-zone consistency by penalizing pixel-pairs of adjacent zones that violate terrain guidance. Efficient parallelization is made possible by coloring the zone adjacency graph to identify zones and zone-pairs that have no dependency and hence can be processed in parallel, and incremental one-pass terrain-guided scanning is conducted wherever applicable to reuse computations. Experiments demonstrate that our solution is more accurate than existing solutions and can efficiently and accurately map out flooding pixels in a giant area of size 24,805 × 40,129. Despite the imbalanced workloads caused by a few large zonal HMTs dominating the serial computing time, our parallelization approach is effective and manages to achieve up to 14.3× speedup on a machine with Intel Xeon Gold 6126 CPU @ 2.60 GHz (24 cores, 48 threads) using 32 threads. 
    more » « less
  2. null (Ed.)
    Abstract. High-resolution remote sensing imagery has been increasingly used for flood applications. Different methods have been proposed for flood extent mapping from creating water index to image classification from high-resolution data. Among these methods, deep learning methods have shown promising results for flood extent extraction; however, these two-dimensional (2D) image classification methods cannot directly provide water level measurements. This paper presents an integrated approach to extract the flood extent in three-dimensional (3D) from UAV data by integrating 2D deep learning-based flood map and 3D cloud point extracted from a Structure from Motion (SFM) method. We fine-tuned a pretrained Visual Geometry Group 16 (VGG-16) based fully convolutional model to create a 2D inundation map. The 2D classified map was overlaid on the SfM-based 3D point cloud to create a 3D flood map. The floodwater depth was estimated by subtracting a pre-flood Digital Elevation Model (DEM) from the SfM-based DEM. The results show that the proposed method is efficient in creating a 3D flood extent map to support emergency response and recovery activates during a flood event. 
    more » « less
  3. Research in different agricultural sectors, including in crop loss estimation during flood and yield estimation, substantially rely on inundation information. Spaceborne remote sensing has widely been used in the mapping and monitoring of floods. However, the inability of optical remote sensing to cloud penetration and the scarcity of fine temporal resolution SAR data hinder the application of flood mapping in many cases. Soil Moisture Active Passive (SMAP) level 4 products, which are model-driven soil moisture data derived from SMAP observations and are available at 3-h intervals, can offer an intermediate but effective solution. This study maps flood progress in croplands by incorporating SMAP surface soil moisture, soil physical properties, and national floodplain information. Soil moisture above the effective soil porosity is a direct indication of soil saturation. Soil moisture also increases considerably during a flood event. Therefore, this approach took into account three conditions to map the flooded pixels: a minimum of 0.05 m3m−3 increment in soil moisture from pre-flood to post-flood condition, soil moisture above the effective soil porosity, and the holding of saturation condition for the 72 consecutive hours. Results indicated that the SMAP-derived maps were able to successfully map most of the flooded areas in the reference maps in the majority of the cases, though with some degree of overestimation (due to the coarse spatial resolution of SMAP). Finally, the inundated croplands are extracted from saturated areas by Spatial Hazard Zone areas (SHFA) of Federal Emergency Management Agency (FEMA) and cropland data layer (CDL). The flood maps extracted from SMAP data are validated with FEMA-declared affected counties as well as with flood maps from other sources. 
    more » « less
  4. Convolutional neural networks (CNNs) are becoming an increasingly popular approach for classification mapping of large complex regions where manual data collection is too time consuming. Stream boundaries in hyper-arid polar regions such as the McMurdo Dry Valleys (MDVs) in Antarctica are difficult to locate because they have little hydraulic flow throughout the short summer months. This paper utilizes a U-Net CNN to map stream boundaries from lidar derived rasters in Taylor Valley located within the MDVs, covering ∼770 km2. The training dataset consists of 217 (300 × 300 m2) well-distributed tiles of manually classified stream boundaries with diverse geometries (straight, sinuous, meandering, and braided) throughout the valley. The U-Net CNN is trained on elevation, slope, lidar intensity returns, and flow accumulation rasters. These features were used for detection of stream boundaries by providing potential topographic cues such as inflection points at stream boundaries and reflective properties of streams such as linear patterns of wetted soil, water, or ice. Various combinations of these features were analyzed based on performance. The test set performance revealed that elevation and slope had the highest performance of the feature combinations. The test set performance analysis revealed that the CNN model trained with elevation independently received a precision, recall, and F1 score of 0.94±0.05, 0.95±0.04, and 0.94±0.04 respectively, while slope received 0.96±0.03, 0.93±0.04, and 0.94±0.04, respectively. The performance of the test set revealed higher stream boundary prediction accuracies along the coast, while inland performance varied. Meandering streams had the highest stream boundary prediction performance on the test set compared to the other stream geometries tested here because meandering streams are further evolved and have more distinguishable breaks in slope, indicating stream boundaries. These methods provide a novel approach for mapping stream boundaries semi-automatically in complex regions such as hyper-arid environments over larger scales than is possible for current methods. 
    more » « less
  5. Rapid global warming is catalyzing widespread permafrost degradation in the Arctic, leading to destructive land-surface subsidence that destabilizes and deforms the ground. Consequently, human-built infrastructure constructed upon permafrost is currently at major risk of structural failure. Risk assessment frameworks that attempt to study this issue assume that precise information on the location and extent of infrastructure is known. However, complete, high-quality, uniform geospatial datasets of built infrastructure that are readily available for such scientific studies are lacking. While imagery-enabled mapping can fill this knowledge gap, the small size of individual structures and vast geographical extent of the Arctic necessitate large volumes of very high spatial resolution remote sensing imagery. Transforming this ‘big’ imagery data into ‘science-ready’ information demands highly automated image analysis pipelines driven by advanced computer vision algorithms. Despite this, previous fine resolution studies have been limited to manual digitization of features on locally confined scales. Therefore, this exploratory study serves as the first investigation into fully automated analysis of sub-meter spatial resolution satellite imagery for automated detection of Arctic built infrastructure. We tasked the U-Net, a deep learning-based semantic segmentation model, with classifying different infrastructure types (residential, commercial, public, and industrial buildings, as well as roads) from commercial satellite imagery of Utqiagvik and Prudhoe Bay, Alaska. We also conducted a systematic experiment to understand how image augmentation can impact model performance when labeled training data is limited. When optimal augmentation methods were applied, the U-Net achieved an average F1 score of 0.83. Overall, our experimental findings show that the U-Net-based workflow is a promising method for automated Arctic built infrastructure detection that, combined with existing optimized workflows, such as MAPLE, could be expanded to map a multitude of infrastructure types spanning the pan-Arctic. 
    more » « less