skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 4, 2026

Title: Citizen Science in the Elementary Classroom: Going beyond data collection
This article portrays how citizen science (CS) projects can be integrated into elementary classrooms to enhance students’ sensemaking skills and connect to real-world science problems. For the last several years, we have been involved in a study, Teacher Learning for Effective School-Based Citizen Science (TL4CS), that developed materials for elementary school teachers to engage their students in data collection, analysis, and interpretation for two existing CS projects: Community Collaborative Rain, Hail, and Snow Network (CoCoRaHS) and the Lost Ladybug Project (LLP). After piloting the TL4CS materials for two years, two teachers, Penny and Amy, share the ways they used the materials to create rich sensemaking experiences for their students. Penny used our TL4CS CoCoRaHS materials to make connections between their daily precipitation data and local weather phenomena, patterns in ecosystems, and student-created graphs. Amy used our TL4CS LLP materials to explore students’ questions about human impact on animals’ habitats and discover the importance of biodiversity in ecosystems. As demonstrated by Penny’s and Amy’s stories, the TL4CS materials can transform mere data collection for CS projects into opportunities for real-world connections and sensemaking in science classrooms.  more » « less
Award ID(s):
2009212
PAR ID:
10627415
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Taylor & Francis
Date Published:
Journal Name:
Science and Children
Volume:
62
Issue:
4
ISSN:
0036-8148
Page Range / eLocation ID:
22 to 30
Subject(s) / Keyword(s):
Citizen science elementary science participatory science sensemaking data collection schoolyard science outdoor learning interdisciplinary connections NGSS SEPs
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. IntroductionElementary teachers face many challenges when including reform-based science instruction in their classrooms, and some teachers have chosen to enhance their science instruction by introducing students to citizen science (CS) projects. When CS projects are incorporated in formal school settings, students have an opportunity to engage in real-world projects as they collect and make sense of data, yet relatively few CS projects offer substantial guidance for teachers seeking to implement the projects, placing a heavy burden on teacher learning. MethodsFramed in theory on teacher relationships with curricula, we prepared science standards-aligned educative support materials for two CS projects. We present convergent mixed methods research that examines two teachers’ contrasting approaches to including school-based citizen science (SBCS) in their fifth-grade classrooms, each using support materials for one of the two CS projects. Both are veteran teachers at under-resourced Title 1 (an indicator of the high percentage of the students identified as economically disadvantaged) rural schools in the southeastern United States. We document the teachers’ interpretations and use of SBCS materials for the CS projects with data from classroom observations, instructional logs, teacher interviews, and student focus groups. ResultsOne teacher adapted the materials to include scaffolding to position students for success in data collection and analysis. In contrast, the second teacher adapted the SBCS support materials to maintain a teacher-centered approach to instruction, identifying perceptions of students’ limited abilities and limited instructional time as constraining factors. DiscussionWe discuss the intersection of CS projects in formal education and opportunities for engaging students in authentic science data collection, analysis, and sense-making. The two teachers’ stories identify the influences of school context and the need for teacher support to encourage elementary teachers’ use of SBCS instruction to supplement their science instruction. 
    more » « less
  2. Science education is an important component of a full education beginning in primary grades. In recent decades, research has identified young learners’ rich knowledge of the natural world and their potential to connect with sophisticated science ideas. Elementary teachers face many challenges to implementing reform-based science instruction in their classrooms. Some teachers may choose to enhance their students’ science experiences by introducing them to citizen science (CS) projects. Unfortunately, few CS projects offer substantial guidance for teachers seeking to implement the projects for instructional purposes, placing a heavy burden on teachers. To address these burdens, our research team collaborated with Teacher Advisory Group (TAG teachers) during the development and revision of educative support materials for two CS projects. We present data about how the TAG teachers informed our CS support materials’ revisions, how they implemented the two CS projects with and without educative support materials, and how they perceived their students’ classroom and outdoor experiences with the CS projects. These data demonstrate the importance of including teachers’ voices and experiences in reform efforts, particularly when trying to incorporate instructional elements that teachers may perceive as deviations from what they are expected to teach. 
    more » « less
  3. Computer Science (CS) Frontiers is a 4-module curriculum, 9 weeks each, designed to bring the frontiers of computing to high school girls for exploration and development. Our prior work has showcased the work in developing and piloting our first three modules, Distributed Computing, Artificial Intelligence (AI), and the Internet of Things (IoT). During the summer of 2022, we piloted the completed curricula, including the new Software Engineering module, with 56 high school camp attendees. This poster reports on the newly developed software engineering module, the experiences of 7 teachers and 11 students using the module, and our plans for improving this module prior to its release in formal high school classrooms. Initial survey and interview data indicate that teachers became comfortable with facilitating the open-endedness of the final projects and that students appreciated the connections to socially relevant topics and the ability of their projects to help with real-world problems such as flood prevention and wheelchair accessibility. The CS Frontiers curriculum has been added to course offerings in Tennessee and adoption through the North Carolina Department of Public Instruction is currently underway. Teachers from Tennessee, North Carolina, Massachusetts, and New York have piloted the materials. Together with researchers, we are working to package the course and curricula for widespread adoption as additional support to students as they try out computing courses in their high school pathways. Our aim is to increase the interest and career awareness of CS for high school girls so they may have an equitable footing to choose CS as a potential major or career. 
    more » « less
  4. While national frameworks call for the integration of science, technology, engineering, mathematics, and computer science (STEM+CS) in K-12 contexts, few studies consider elementary teachers’ perceptions of implementing STEM+CS projects in science classrooms. This single case study explores elementary science teachers’ perceptions of enacting STEM+CS curricular materials. Survey and interview data were collected over the four-week project and qualitatively coded. Findings demonstrate teachers’ reported struggles to implement unfamiliar disciplines and leverage students’ prior knowledge in familiar disciplines as well as unanticipated consequences of instructional decisions based on perceived student engagement and pacing. Results underscore the value of teacher voice for curricular and professional development and highlight the need for further investigation of how teachers’ perceptions may influence enactment of STEM+CS curricular materials. 
    more » « less
  5. School-based citizen science (SBCS) can promote mathematics and science integration in elementary classrooms. The "Teacher Learning for Effective School-Based Citizen Science" (TL4CS) project created materials to support teachers' use of SBCS. One teacher shares her experiences using TL4CS materials designed for the weather-focused CoCoRaHS project to teach mathematics and science. 
    more » « less