Chirality, a fundamental attribute of asymmetry, pervades in both nature and functional soft materials. In chiral material systems design, achieving global symmetry breaking of building blocks during assembly, with or without the aid of additives, has emerged as a promising strategy across domains including chiral sensing, electronics, photonics, spintronics, and biomimetics. We first introduce the fundamental aspects of chirality, including its structural basis and symmetry-breaking mechanisms considering free energy minimization. We particularly emphasize supramolecular assembly, such as through the formation of chiral liquid crystal phases. Next, we summarize processing strategies to control chiral symmetry breaking, exploiting external fields such as flow, magnetic fields, and templates. The final section discusses interactions between chiral molecular assemblies with circularly polarized (CP) light and electronic spin and their applications in CP light detectors, CP-spin-organic light-emitting diodes, CP displays, and spintronic devices based on the chirality-induced spin selectivity effect.
more »
« less
Advanced polarization-control strategies for enhancing performance in multipetawatt laser facilities
Our research focuses on designing all-reflective phase retarders (RPRs) to generate and maintain circularly polarized (CP) light for NSF OPAL and other multipetawatt laser facilities. Assuming that the input polarization is either s- or p-polarized, RPRs need to be used in an out-of-plane configuration. Here, we will discuss the impact of transporting and focusing optics on CP light.
more »
« less
- Award ID(s):
- 2329970
- PAR ID:
- 10627435
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Physics of Plasmas
- Volume:
- 32
- Issue:
- 8
- ISSN:
- 1070-664X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A method is provided for using twisted acenes, and more particularly to configurationally stable twisted acenes that are imbedded into the structure of [7]helicene at the fulcrum ring to form useable material structures. The helicene propa- gates its chiral nature into the acene, while acting as a locking mechanism to thermal racemization. These doubly- helical compounds are part of a new homologous series of polycyclic aromatic hydrocarbons, namely the [7]helitwis- tacenes. Such [7]helitwistacenes have utility as materials suitable for forming a circularly polarized organic light emitting diode (CP-OLED) for direct emission of circularly polarized (CP) light for the fabrication of high efficiency electronic displays.more » « less
-
Abstract For advancing next‐generation optoelectronics, a versatile strategy for fabricating π‐conjugated polymer (π‐CP)/chiral‐small molecule (SM) hybrid films through co‐crystallization‐mediated chirality transfer is reported. The transfer of optical chirality from 1,1′‐binaphthyl–2,2′‐diamine (BN), a representative chiral inducer SM, to thin films of various achiral π‐CPs, including non‐fluorene π‐CPs, is achieved by simply blending the π‐CPs with BN using aromatic organic solvents. The resulting π‐CP/chiral‐SM hybrid films exhibit chiroptical responses at the main electronic absorption bands of various π‐CPs. Studies of the morphology, crystalline structure, and phase‐separation structure of a representative hybrid system of poly(3‐hexylthiophene) (P3HT) and BN reveal that these hybrid films exhibit a characteristic lamellar structure where the π‐CPs co‐crystallize with chiral BN molecules, facilitated by aromatic solvent‐assisted intermolecular π–π interactions. In‐depth photophysical analysis suggests that BN molecules co‐crystallized in the P3HT lamellar structure induce asymmetrically misaligned transition dipoles along the P3HT conjugated backbone, transferring optical chirality from BN to P3HT under circularly polarized light illumination. As a proof‐of‐concept, chiroptical photodiodes based on π‐CP/chiral‐SM hybrid films and printed micropatterns, exhibiting a distinguishable photocurrent response depending on the direction of circularly polarized light are successfully demonstrated.more » « less
-
Abstract Nonreciprocity and nonreciprocal optical devices play a vital role in modern photonic technologies by enforcing one-way propagation of light. Here, we demonstrate an all-optical approach to nonreciprocity based on valley-selective response in transition metal dichalcogenides (TMDs). This approach overcomes the limitations of magnetic materials and it does not require an external magnetic field. We provide experimental evidence of photoinduced nonreciprocity in a monolayer WS2pumped by circularly polarized (CP) light. Nonreciprocity stems from valley-selective exciton population, giving rise to nonlinear circular dichroism controlled by CP pump fields. Our experimental results reveal a significant effect even at room temperature, despite considerable intervalley-scattering, showing promising potential for practical applications in magnetic-free nonreciprocal platforms. As an example, here we propose a device scheme to realize an optical isolator based on a pass-through silicon nitride (SiN) ring resonator integrating the optically biased TMD monolayer.more » « less
-
The rise of quantum information science has spurred chemists to prepare new molecules that serve as useful building blocks in quantum technologies of the future. Implementation of molecular spin-based qubits requires new methods to induce high spin polarization of samples. Herein, we report design criteria to develop axially symmetric spin-1/2 molecules amenable to optically induced magnetization (OIM), a technique using circularly polarized (CP) excitation to deliver spin polarization. We apply these criteria to develop a series of tungsten(V) chalcogenide complexes that are demonstrated to have large spin-sensitive responses to CP light using magnetic circular dichroism (MCD) that could allow up to ∼20% spin polarization through OIM. Pulsed electron paramagnetic resonance (EPR) spectra reveal these systems have improved relaxation times over molecules like K2IrCl6, a species recently investigated by OIM, and field-swept electron spin−echo (FS-ESE) experiments show they have a remarkable lack of anisotropy in their phase-memory Tm times. The design criteria are general and point toward future ways to improve OIMinitializable qubits.more » « less
An official website of the United States government
