skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Laser-induced plasma analysis of ammonia-oxygen and ammonia-oxygen-enriched-air flames at elevated pressures
Award ID(s):
2225803
PAR ID:
10627520
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Combustion and Flame
Volume:
271
ISSN:
0010-2180
Page Range / eLocation ID:
113803
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sensor driven aeration control strategies have recently been developed as a means to efficiently carry out biological nutrient removal (BNR) and reduce aeration costs in wastewater treatment plants. Under load-based aeration control, often implemented as ammonia-based aeration control (ABAC), airflow is regulated to meet desired effluent standards without specifically setting dissolved oxygen (DO) targets. Another approach to reduce aeration requirements is to constantly maintain low DO conditions and allow the microbial community to adapt to the low-DO environment. In this study, we compared the performance of two pilot-scale BNR treatment trains that simultaneously used ABAC and low-DO operation to evaluate the combination of these two strategies. One pilot plant was operated with continuous ABAC while the other one used intermittent ABAC. Both processes achieved greater than 90% total Kjehldal nitrogen (TKN) removal, 60% total nitrogen removal, and nearly 90% total phosphorus removal. Increasing the solids retention time (SRT) during the period of cold (∼12 °C) water temperatures helped maintain ammonia removal performance under low-DO conditions. However, both processes experienced poor solids settling characteristics during winter. While settling was recovered under warmer temperatures, improving settling quality remains a challenge under low-DO operation. 
    more » « less
  2. Synthesized ammonia exiting a reactor with hydrogen and nitrogen can be selectively absorbed by MgCl2 for renewable absorbent-based Haber-Bosch for dispersed ammonia manufacturing. Such separation can be more efficient even at elevated temperatures compared to the condensation method used in the conventional Haber-Bosch process. To determine the optimal conditions to capture and release the most ammonia per thermal cycle of the sorbent salt, the sorbent capacity was measured with varying regeneration temperature, regeneration time, and sweep rate under steady-state cycling conditions. In all cases, uptake was limited to bed breakthrough, and cyclic steady state was achieved. By using a lower temperature for MgCl2 regeneration (200 °C), the working capacities were maintained comparable to those at higher desorption temperatures (∼400 °C), even without the use of inert sweep gas. Using a sufficiently high regeneration temperature (∼200 °C) allowed for sufficiently low sweep gas so that the product ammonia can exceed 72 mol % purity in a mixture of N2 and H2. These results were achieved with a short regeneration time of 20 min or less, which is an improvement from the hour-long regeneration time previously reported. These measurements identified new operating parameters for more efficient absorber design to produce economical renewable ammonia at small scale. 
    more » « less
  3. null (Ed.)
    Low-temperature direct ammonia fuel cells (DAFCs) use carbon-neutral ammonia as a fuel, which has attracted increasing attention recently due to ammonia's low source-to-tank energy cost, easy transport and storage, and wide availability. However, current DAFC technologies are greatly limited by the kinetically sluggish ammonia oxidation reaction (AOR) at the anode. Herein, we report an AOR catalyst, in which ternary PtIrZn nanoparticles with an average size of 2.3 ± 0.2 nm were highly dispersed on a binary composite support comprising cerium oxide (CeO 2 ) and zeolitic imidazolate framework-8 (ZIF-8)-derived carbon (PtIrZn/CeO 2 -ZIF-8) through a sonochemical-assisted synthesis method. The PtIrZn alloy, with the aid of abundant OH ad provided by CeO 2 and uniform particle dispersibility contributed by porous ZIF-8 carbon (surface area: ∼600 m 2 g −1 ), has shown highly efficient catalytic activity for the AOR in alkaline media, superior to that of commercial PtIr/C. The rotating disk electrode (RDE) results indicate a lower onset potential (0.35 vs. 0.43 V), relative to the reversible hydrogen electrode at room temperature, and a decreased activation energy (∼36.7 vs. 50.8 kJ mol −1 ) relative to the PtIr/C catalyst. Notably, the PtIrZn/CeO 2 -ZIF-8 catalyst was assembled with a high-performance hydroxide anion-exchange membrane to fabricate an alkaline DAFC, reaching a peak power density of 91 mW cm −2 . Unlike in aqueous electrolytes, supports play a critical role in improving uniform ionomer distribution and mass transport in the anode. PtIrZn nanoparticles on silicon dioxide (SiO 2 ) integrated with carboxyl-functionalized carbon nanotubes (CNT–COOH) were further studied as the anode in a DAFC. A significantly enhanced peak power density of 314 mW cm −2 was achieved. Density functional theory calculations elucidated that Zn atoms in the PtIr alloy can reduce the theoretical limiting potential of *NH 2 dehydrogenation to *NH by ∼0.1 V, which can be attributed to a Zn-modulated upshift of the Pt–Ir d-band that facilitates the N–H bond breakage. 
    more » « less