skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 30, 2026

Title: A multivariate library of zirconia metal–organic frameworks with dissolved p-nitroaniline dipoles and concentration-dependent optical and dielectric response
In this work, we show how the combination of soluble non-polar and polar links allows for the preparation of multivariate metal–organic frameworks (MTV MOFs) that exhibit dipolar solid-solution behavior.  more » « less
Award ID(s):
2118201
PAR ID:
10627598
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
CrystEngComm
Volume:
27
Issue:
26
ISSN:
1466-8033
Page Range / eLocation ID:
4463 to 4469
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wysession, Michael; Grimm, Nancy; Peterson, Bill; Hofmann, Eileen; Zhang, Renyi; Illangasekare, Tissa (Ed.)
    Abstract In 2023, the first Polar Postdoc Leadership Workshop convened to discuss present and future polar science issues and to develop leadership skills. The workshop discussions fostered a collective commitment to inclusive leadership within the polar science community among all participants. Here, we outline challenges encountered by underrepresented groups in polar sciences, while also noting that progress has been made to improve inclusivity in the field. Further, we highlight the inclusive leadership principles identified by workshop participants to bring to the polar community as we transition into leadership roles. Finally, insights and practical knowledge we gained from the workshop are shared, aiming to inform the community of our commitment to inclusive leadership and encourage the polar community to join us in pursuing action toward our shared vision for a more welcoming polar science future. 
    more » « less
  2. Abstract A fundamental divide exists between previous studies that conclude that polar amplification does not occur without sea ice and studies that find that polar amplification is an inherent feature of the atmosphere independent of sea ice. We hypothesize that a representation of climatological ocean heat transport is key for simulating polar amplification in ice-free climates. To investigate this, we run a suite of targeted experiments in the slab ocean aquaplanet configuration of CESM2-CAM6 with different profiles of prescribed ocean heat transport, which are invariant under CO2quadrupling. In simulations without climatological ocean heat transport, polar amplification does not occur. In contrast, in simulations with climatological ocean heat transport, robust polar amplification occurs in all seasons. What is causing this dependence of polar amplification on ocean heat transport? Energy-balance model theory is incapable of explaining our results and in fact would predict that introducing ocean heat transport leads to less polar amplification. We instead demonstrate that shortwave cloud radiative feedbacks can explain the divergent polar climate responses simulated by CESM2-CAM6. Targeted cloud locking experiments in the zero ocean heat transport simulations are able to reproduce the polar amplification of the climatological ocean heat transport simulations, solely by prescribing high-latitude cloud radiative feedbacks. We conclude that polar amplification in ice-free climates is underpinned by ocean–atmosphere coupling, through a less negative high latitude shortwave cloud radiative feedback that facilitates enhanced polar warming. In addition to reconciling previous disparities, these results have important implications for interpreting past equable climates and climate projections under high-emissions scenarios. Significance StatementPolar amplification is a robust feature of climate change in the modern-day climate. However, previous climate modeling studies fundamentally do not agree on whether polar amplification occurs in ice-free climates. In this study, we find in a state-of-the-art climate model that, if ocean heat transport is neglected, the response to an increase in CO2is not polar amplified, whereas robust polar amplification occurs if ocean heat transport is included. Using targeted model experiments, we diagnose cloud radiative effects as the driver of this divergent behavior. We conclude that polar amplification is a robust feature of the atmosphere–ocean system. Our results have important implications for interpreting past warm climates and future projections under high-emissions scenarios. 
    more » « less
  3. Polar metals are an intriguing class of materials that simultaneously host free carriers and polar structural distortions. Despite the name “polar metal,” however, most well-studied polar metals are poor electrical conductors. Here, we demonstrate the molecular beam epitaxial growth of LaPtSb and LaAuGe, two polar metal compounds whose electrical resistivity is an order of magnitude lower than the well studied oxide polar metals. These materials belong to a broad family of ABC intermetallics adopting the stuffed wurtzite structure, also known as hexagonal Heusler compounds. Scanning transmission electron microscopy reveals a polar structure with unidirectionally buckled BC (PtSb and AuGe) planes. Magnetotransport measurements demonstrate good metallic behavior with low residual resistivity (ρLaAuGe = 59.05 μΩ cm and ρLaAPtSb = 27.81 μΩ cm at 2 K) and high carrier density (nh ∼ 1021 cm−3). Photoemission spectroscopy measurements confirm the band metallicity and are in quantitative agreement with density functional theory (DFT) calculations. Through DFT-chemical pressure and crystal orbital Hamilton population analyses, the atomic packing factor is found to support the polar buckling of the structure although the degree of direct interlayer B–C bonding is limited by repulsion at the A–C contacts. When combined with predicted ferroelectric hexagonal Heuslers, these materials provide a new platform for fully epitaxial, multiferroic heterostructures. 
    more » « less
  4. Abstract Polar ecosystems are experiencing amongst the most rapid rates of regional warming on Earth. Here, we discuss ‘omics’ approaches to investigate polar biodiversity, including the current state of the art, future perspectives and recommendations. We propose a community road map to generate and more fully exploit multi-omics data from polar organisms. These data are needed for the comprehensive evaluation of polar biodiversity and to reveal how life evolved and adapted to permanently cold environments with extreme seasonality. We argue that concerted action is required to mitigate the impact of warming on polar ecosystems via conservation efforts, to sustainably manage these unique habitats and their ecosystem services, and for the sustainable bioprospecting of novel genes and compounds for societal gain. 
    more » « less
  5. null (Ed.)
    Incorporation of polar side chains on organic semiconducting materials have been used recently in thermoelectric materials to increase dopant:semiconductor miscibility and stability to further increase the performance and durability of devices. However, investigations into how polar side chains can affect the structure and energetics of polythiophenes compared to non-polar alkyl side chains are usually carried out using materials with no common morphological structure. Within this work we systematically investigate the increase in polar side chain content on poly(3-hexylthiophene) (P3HT) and how the optical, electrochemical, and structural properties are affected. We find a decreasing degree of aggregation with increasing polar side chain content leading to lower charge carrier mobilities. Upon doping with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), we find that the electrical conductivity is reduced when incorporating the polar side chain and no stabilising effect is demonstrated when annealing the doped thin films at raised temperatures. This study emphasises that polar functionalities do not always increase dopant:semiconductor interactions and can harm desirable structural and electrical characteristics, and therefore should be incorporated into organic semiconductors with caution. 
    more » « less