The Ocean Observatories Initiative (OOI) deployed both the In-Situ Ultraviolet Spectrophotometer (ISUS) and Submersible Underwater Nitrate Sensor (SUNA) for continuous, in-situ measurement of nitrate. At the Pioneer-New England Shelf Array (Pioneer-NES), ISUS/SUNA sensors were deployed at 7-meters depth at the Inshore (ISSM), Central (CNSM), and Offshore (OSSM) Surface Mooring locations. The SUNA sensor replaced the ISUS sensors spring 2018. The SUNA was a major improvement in technology, with significant improvements in accuracy and precision. However, it still suffers from calibration drift due to lamp fatigue and biofouling as well as spectral interference due to bromide and fluorometric CDOM. Drift is corrected by application of post-cruise calibrations to recalculate the temperature-and-salinity corrected nitrate concentration following Sakamoto (2009a) and estimating a linear drift between pre-and-post cruise deployments. Validation is performed by comparison with discrete water samples collected during deployment/recovery of the sensors. These datasets include the nitrate data from the Pioneer-NES ISSM (CP03ISSM-RID26-07-NUTNRB000.nc), CNSM (CP01CNSM-RID26-07-NUTNRB000.nc), and OSSM (CP04OSSM-RID26-07-NUTNRB000.nc) SUNA instruments spanning Spring 2018 through Fall 2022. Each dataset contains the measured nitrate, the temperature-salinity corrected nitrate, the drift-corrected nitrate, and the nitrate following validation with bottle samples. 
                        more » 
                        « less   
                    
                            
                            Lab-on-chip nitrate + nitrite and silicate sensors on Ocean Observing Initiative (OOI) Southern Ocean Surface Mooring from December 2018 to January 2020.
                        
                    
    
            Two Lab-on-Chip sensors, one measuring nitrate + nitrite (here after nitrate) and one measuring silicic acid (here after silicate), were deployed on the Ocean Observing Initiative (OOI) Southern Ocean Array surface mooring at a depth of approximately 12m on the near surface instrument frame in the southeast Pacific Ocean (-54 N, -89W). The nitrate sensor operated as expected for the full deployment period (6/12/2018 to 19/1/2020), collecting daily measurements. The silicate sensor operated as expected for almost ten months (until 1/10/2019), collecting up to four measurements per day. The OOI surface mooring was deployed in December 2018 on research cruise DY096 and recovered in January 2020 on research cruise DY112. The sensors and associated research cruises (DY096 and DY112) were supported by the Natural Environment Research Council (NERC) RoSES Carbon Uptake and Seasonal Trends in Antarctic Remineralisation Depth (CUSTARD) project. This material is based upon work supported by the Ocean Observatories Initiative, which is a major facility fully funded by the National Science Foundation (NSF). 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2244833
- PAR ID:
- 10627712
- Publisher / Repository:
- NERC EDS British Oceanographic Data Centre NOC
- Date Published:
- Subject(s) / Keyword(s):
- oceans
- Format(s):
- Medium: X Other: Binary; Delimited
- Location:
- (East Bound Longitude:-37.266667 ; North Bound Latitude:3.50171899829913 ; South Bound Latitude:-60 ; West Bound Longitude:131.023611 )
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This dataset contains discrete sample measurements of dissolved oxygen, dissolved inorganic carbon, and total alkalinity collected during yearly Ocean Observatories Initiative (OOI) turn-around cruises to maintain the Irminger Sea Array (60.46°N, 38.44°W). Samples in this dataset were collected as part of an ancillary research project that joined the OOI turn-around cruises in June 2018 and August 2019 as part of ongoing efforts to enable OOI biogeochemical sensor data to be used to address scientific questions about ocean carbon cycling and the biological carbon pump. Discrete sample data collected and analyzed by this research team complement data collected by the OOI program as part of routine turn-around cruise activities. We provide the supplementary measurements made by our team alongside salinity- and oxygen- calibrated Conductivity Temperature Depth (CTD) and oxygen sensor data from the depths where Niskin bottles were closed for sample collection and additional discrete oxygen measurements made by the OOI team.more » « less
- 
            This dataset contains bottle-calibrated dissolved oxygen (DO) profiles collected from Conductivity Temperature Depth (CTD) casts on turn-around cruises performed yearly to maintain the Ocean Observations Initiative (OOI) Global Irminger Sea Array (60.46°N, 38.44°W). DO profiles were used in conjunction with oxygen bottle measurements (Winklers) to produce a post-cruise oxygen-calibrated CTD product for scientific use. Bottle-calibrated CTD salinity products were used to produce post-cruise oxygen-calibrated CTD profiles starting in 2018 (Year 5). This document contains overviews of CTD data collection and processing and post-processing oxygen sensor calibration method. Reports for each cruise include a summary of relevant cruise events, oxygen sensor calibration results, and issues/problems associated with oxygen data collected on each cruise. This dataset has been created for end-users that require field-calibrated oxygen data products that are currently not provided by OOI through its standard data dissemination.more » « less
- 
            Introduction The National Science Foundation Ocean Observatories Initiative (OOI) collects continuous in-situ measurements of dissolved oxygen (DO) on the Endurance Array moorings in the inner shelf region of the Oregon and Washington coasts. Aanderaa Optode 4831 oxygen sensors were deployed at 7 meters depth on the near surface instrument frame (NSIF) and on the collocated coastal surface piercing profiler (CSPP) moorings. The sensors suffer from calibration drift due to biofouling, which can cause a dramatic increase in DO during daylight hours and corresponding decrease at night compared to the conditions in the water column (Palevsky et al., 2023). This enhanced diel signal, when present, is much more pronounced on fixed-depth sensors and usually begins to occur 1-2 months after a mooring is deployed. After this biofouling issue was identified, OOI began deploying UV lamps adjacent to the oxygen sensor in spring 2018, after which there was substantial improvement in DO data quality. Each file in this dataset contains the measured near surface DO and the corrected near surface DO at the Oregon and Washington inner shelf surface moorings (ISSM) with gaps from periods of biofouling replaced with the DO measured by the CSPP. Methods OOI oxygen data Dissolved oxygen sensors on OOI CSPPs and at fixed-depths on moorings are named “DOSTA”, a contraction of DO Stable Response. The DOSTA data are downloaded on a deployment-by-deployment basis for all available data streams (telemetered and recovered for fixed-depth moorings; recovered only for CSPPs) from the OOI Gold Copy THREDDs catalog. Each deployment file additionally contains the practical salinity, seawater temperature, and pressure measured by the collocated CTD. The telemetered and recovered data streams are combined and interpolated to a common timebase with one-minute resolution. Evaluate fixed-depth oxygen data The NSIF DO data are quality-controlled using both automated and manual methods to create flags that follow the Quality Assurance of Real-Time Oceanographic Data (QARTOD) standards. Endurance array team members perform a visual inspection of oxygen and ancillary data from each deployment to determine instrument failure from biofouling or other issues. Annotations from human-in-the-loop analyses of failed or suspect data generate the QARTOD flags. Merge profiler oxygen data QARTOD flags are applied to the CSPP data to omit failed data points. CSPP DO data are averaged from 2-7 meters depth then interpolated to the one-minute timebase. The resulting CSPP time series shows good agreement with the NSIF during data overlaps. Finally, the NSIF DO data is replaced with the CSPP DO data during periods of biofouling or instrument failure, flags are generated for the hybrid DO dataset, and separate netCDF files are created for the Oregon and Washington locations. Files Filename: CE01ISSM-NSIF-DOSTA.nc Description Oregon Coastal Endurance Site CE01, Inner Shelf Surface Mooring, Near Surface Instrument Frame, Dissolved Oxygen Stable Response Geographic Range Latitude: 44.6598 to 44.6598 Longitude: -124.095 to -124.095 Time Range Start: 2014-10-10, 18:00:00 UTC End: 2025-06-24, 20:00:00 UTC Variables: "time", ”depth”, "sea_water_practical_salinity", "sea_water_practical_salinity_qartod_results", "sea_water_temperature", "sea_water_temperature_qartod_results", "measured_dissolved_oxygen", "measured_dissolved_oxygen_qartod_results", "corrected_dissolved_oxygen", "corrected_dissolved_oxygen_qartod_results" Filename: CE06ISSM-NSIF-DOSTA.nc Description Washington Coastal Endurance Site CE06, Inner Shelf Surface Mooring, Near Surface Instrument Frame, Dissolved Oxygen Stable Response Geographic Range Latitude: 47.1336 to 47.1336 Longitude: -124.272 to -124.272 Time Range Start: 2015-04-10, 05:00:00 UTC End: 2025-06-24, 20:00:00 UTC Variables: "time", ”depth”, "sea_water_practical_salinity", "sea_water_practical_salinity_qartod_results", "sea_water_temperature", "sea_water_temperature_qartod_results", "measured_dissolved_oxygen", "measured_dissolved_oxygen_qartod_results", "corrected_dissolved_oxygen", "corrected_dissolved_oxygen_qartod_results"more » « less
- 
            The hydrographic sampling performed by OOI-CGSN (the Ocean Observatories Initiative - Coastal and Global Scale Nodes) part of each Array turn represents a significant collection of valuable physical, chemical, and biological information. In addition to the CTD, collected hydrographic data include discrete oxygen, salinity, nutrient (nitrate, nitrite, silicate, phosphate, ammonium), chlorophyll, and carbon system measurements. These data serve several important functions. First, they are necessary for the calibration and evaluation of the moored instrumentation at each Array. Furthermore, the annual (Global) or biannual (Coastal) collection of data at the same locations provides a unique time series of a large set of water properties following established community standards and methods, independent of its association with the OOI moorings. The analyses of collected water samples for the parameters listed above are performed by a number of outside labs on behalf of OOI-CGSN. Consequently, the water sampling data for a given cruise is distributed among a number of different files. The Discrete Sampling Summary integrates the related CTD, metadata, and discrete water sample data into a single file. Additionally, it synthesizes qualitative and quantitative information about the quality of a measurement into data quality flags for each associated parameter which follow WOCE-standards. The final product is the Discrete Sampling Summary spreadsheet which contains the metadata, CTD data and discrete water sample data into a single spreadsheet with data quality flags. This dataset includes hydrographic data from the Global Southern Ocean Array. The Global Southern Ocean Array was located in the high-latitude South Pacific, west of the Southern tip of Chile in an area of large scale thermohaline circulation, intermediate water formation , and CO2 sequestration. It permitted examination of linkages between the Southern Ocean and the Antarctic, including strengthening westerly winds and upwelling. This array was in place from February 2015 to January 2020 when it was removed.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
