skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mixing of Metropolis-adjusted Markov chains via couplings: The high acceptance regime
We present a coupling framework to upper bound the total variation mixing time of various Metropolis-adjusted, gradient-based Markov kernels in the ‘high acceptance regime’. The approach uses a localization argument to boost local mixing of the underlying unadjusted kernel to mixing of the adjusted kernel when the acceptance rate is suitably high. As an application, mixing time guarantees are developed for a non-reversible, adjusted Markov chain based on the kinetic Langevin diffusion, where little is currently understood.  more » « less
Award ID(s):
2111224
PAR ID:
10627775
Author(s) / Creator(s):
;
Publisher / Repository:
Institute of Mathematical Statistics
Date Published:
Journal Name:
Electronic Journal of Probability
Volume:
29
ISSN:
1083-6489
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract When implementing Markov Chain Monte Carlo (MCMC) algorithms, perturbation caused by numerical errors is sometimes inevitable. This paper studies how the perturbation of MCMC affects the convergence speed and approximation accuracy. Our results show that when the original Markov chain converges to stationarity fast enough and the perturbed transition kernel is a good approximation to the original transition kernel, the corresponding perturbed sampler has fast convergence speed and high approximation accuracy as well. Our convergence analysis is conducted under either the Wasserstein metric or the$$\chi^2$$metric, both are widely used in the literature. The results can be extended to obtain non-asymptotic error bounds for MCMC estimators. We demonstrate how to apply our convergence and approximation results to the analysis of specific sampling algorithms, including Random walk Metropolis, Metropolis adjusted Langevin algorithm with perturbed target densities, and parallel tempering Monte Carlo with perturbed densities. Finally, we present some simple numerical examples to verify our theoretical claims. 
    more » « less
  2. We provide a general framework for computing mixing times of finite Markov chains when its minimal ideal is left zero. Our analysis is based on combining results by Brown and Diaconis with our previous work on stationary distributions of finite Markov chains. We introduce a new Markov chain on linear extensions of a poset with n vertices, which is a variant of the promotion Markov chain of Ayyer, Klee and the last author, and show that it has a mixing time O(n log n). 
    more » « less
  3. We provide a general framework for computing mixing times of finite Markov chains when its minimal ideal is left zero. Our analysis is based on combining results by Brown and Diaconis with our previous work on stationary distributions of finite Markov chains. We introduce a new Markov chain on linear extensions of a poset with n vertices, which is a variant of the promotion Markov chain of Ayyer, Klee and the last author, and show that it has a mixing time O(n log n). 
    more » « less
  4. Alquier, Pierre (Ed.)
    Datasets displaying temporal dependencies abound in science and engineering applications, with Markov models representing a simplified and popular view of the temporal dependence structure. In this paper, we consider Bayesian settings that place prior distributions over the parameters of the transition kernel of a Markov model, and seek to characterize the resulting, typically intractable, posterior distributions. We present a Probably Approximately Correct (PAC)-Bayesian analysis of variational Bayes (VB) approximations to tempered Bayesian posterior distributions, bounding the model risk of the VB approximations. Tempered posteriors are known to be robust to model misspecification, and their variational approximations do not suffer the usual problems of over confident approximations. Our results tie the risk bounds to the mixing and ergodic properties of the Markov data generating model. We illustrate the PAC-Bayes bounds through a number of example Markov models, and also consider the situation where the Markov model is misspecified. 
    more » « less
  5. In this paper, we examine the computational complexity of sampling from a Bayesian posterior (or pseudo-posterior) using the Metropolis-adjusted Langevin algorithm (MALA). MALA first employs a discrete-time Langevin SDE to propose a new state, and then adjusts the proposed state using Metropolis-Hastings rejection. Most existing theoretical analyses of MALA rely on the smoothness and strong log-concavity properties of the target distribution, which are often lacking in practical Bayesian problems. Our analysis hinges on statistical large sample theory, which constrains the deviation of the Bayesian posterior from being smooth and log-concave in a very specific way. In particular, we introduce a new technique for bounding the mixing time of a Markov chain with a continuous state space via the s-conductance profile, offering improvements over existing techniques in several aspects. By employing this new technique, we establish the optimal parameter dimension dependence of d^1/3 and condition number dependence of κ in the non-asymptotic mixing time upper bound for MALA after the burn-in period, under a standard Bayesian setting where the target posterior distribution is close to a d-dimensional Gaussian distribution with a covariance matrix having a condition number κ. We also prove a matching mixing time lower bound for sampling from a multivariate Gaussian via MALA to complement the upper bound. 
    more » « less