skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metabolic scaling of an invasive mussel depends on temperature and chemical cues from an invasive predator
Metabolism drives various biological processes, potentially influencing the ecological success and evolutionary fitness of species. Understanding diverse metabolic rates is fundamental in biology. Mechanisms underlying adaptation to factors like temperature and predation pressure remain unclear. Our study explored the role of temperature and predation pressure in shaping the metabolic scaling of an invasive mussel species (Brachidontes pharaonis). Specifically, we performed laboratory-based experiments to assess the effects of phenotypic plasticity on the metabolic scaling by exposing the mussels to water conditions with and without predator cues from another invasive species (the blue crab,Callinectes sapidus) across various temperature regimes. We found that temperature effects on metabolic scaling of the invasive mussels are mediated by the presence of chemical cues of an invasive predator, the blue crab. Investigating temperature–predator interactions underscores the importance of studying the ecological effects of global warming. Our research advances our understanding of how environmental factors jointly impact physiological processes.  more » « less
Award ID(s):
2106067
PAR ID:
10627836
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
The Royal Society Publishing
Date Published:
Journal Name:
Biology Letters
Volume:
20
Issue:
6
ISSN:
1744-957X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Blue mussels (Mytilus edulis) are important keystone species that have been declining in the Gulf of Maine. This could be attributed to a variety of complex factors such as indirect effects due to invasion by epibionts, which remains unexplored mathematically. Based on classical optimal foraging theory (OFT) and anti-fouling defense mechanisms of mussels, we derive an ODE model for crab–mussel interactions in the presence of an invasive epibiont, Didemnum vexillum. The dynamical analysis leads to results on stability, global boundedness and bifurcations of the model. Next, via optimal control methods, we predict various ecological outcomes. Our results have key implications for preserving mussel populations in the advent of invasion by non-native epibionts. In particular, they help us understand the changing popluation dynamics of local predator–prey communities, due to indirect effects that epibionts confer. 
    more » « less
  2. Abstract This study aimed to identify the importance of ecological factors to distribution patterns of the invasive Clam (Corbicula fluminea) relative to native mussels (family: Unionidae) across seven rivers within the Mobile and Tennessee basins, Southeast United States. We quantitatively surveyed dense, diverse native mussel aggregations across 20 river reaches and estimated mussel density, biomass, and species richness along with density of invasiveC.fluminea(hereafterCorbicula). We measured substrate particle size, velocity, and depth in quadrats where animals were collected. Additionally, we characterized reach scale environmental parameters including seston quantity and quality (% Carbon, % Nitrogen, % Phosphorous), water chemistry (ammonium [], soluble reactive phosphorous [SRP]), and watershed area and land cover. Using model selection, logistic regression, and multivariate analysis, we characterized habitat features and their association to invasiveCorbiculawithin mussel beds. We found thatCorbiculawere more likely to occur and more abundant in quadrats with greater mussel biomass, larger substrate size, faster water velocity, and shallower water depth. At the reach scale,Corbiculadensities increased where particle sizes were larger. Mussel richness, density, and biomass increased with watershed area. Water column increased at reaches with more urban land cover. No land cover variables influencedCorbiculapopulations or mussel communities. The strong overlapping distribution ofCorbiculaand mussels support the hypothesis thatCorbiculaare not necessarily limited by habitat factors and may be passengers of change in rivers where mussels have declined due to habitat degradation. WhetherCorbiculais facilitated by mussels or negatively interacts with mussels in these systems remains to be seen. Focused experiments that manipulate patch scale variables would improve our understanding of the role of species interactions (e.g., competition, predation, facilitation) or physical habitat factors in influencing spatial overlap betweenCorbiculaand native mussels. 
    more » « less
  3. Oysters,Crassostrea virginica, are economically and ecologically valuable but have severely declined, and restoration is needed. As with the restoration and aquaculture of many shellfish species, restored oyster reefs are often impeded by predation losses, reducing restoration success and restricting locations where restored reefs are viable. Like many organisms, shellfish can modify their morphology to reduce predation risk by detecting and responding to chemical signals emanating from predators and injured prey. Oysters grow heavier, stronger shells in response to predation risk cues, which improves their survival. We tested if using predator cues to trigger shell hardening in oysters could be performed over a scale suitable for oyster reef restoration and improve oyster survival long‐term. We constructed an intertidal oyster reef using oysters grown in a nursery for 4 weeks while exposed to either exudates from Blue crab (Callinectes sapidus) predators or grown in controls without predator cues. Oysters grown with predators were 65% harder than those grown in controls, and after 1 year in the field, had a 60% increase in survival. Predation losses on the restored reef were significant, and the benefit of predator induction for survival was highest at intermediate tidal elevations, presumably due to intermediate levels of predation and abiotic stress. Our results suggest that manipulating the morphology of cultivated or restored species can be an effective tool to improve survival in habitats where consumers impede restoration success. 
    more » « less
  4. Dall, Sasha (Ed.)
    Predator-induced changes in prey foraging can influence community dynamics by increasing the abundance of basal resources via a trait-mediated trophic cascade. The strength of these cascades may be altered by eco-evolutionary relationships between predators and prey, but the role of basal resources has received limited attention. We hypothesized that trait-mediated trophic cascade strength may be shaped by selection from trophic levels above and below prey. Field and laboratory experiments used snails (Nucella lapillus) from two regions in the Gulf of Maine (GoM) that vary in basal resource availability (e.g. mussels), seawater temperature, and contact history with the invasive green crab,Carcinus maenas. In field and laboratory experiments,Nucellafrom both regions foraged on mussels in the presence or absence of green crab risk cues. In the field,Nucellafrom the northern GoM, where mussels are scarce, were less responsive to risk cues and more responsive to seawater temperature than southernNucella. In the lab, however, northernNucellaforaged and grew more than southern snails in the presence of risk, but foraging and growth were similar in the absence of risk. We suggest that adaptation to basal resource availability may shape geographical variation in the strength of trait-mediated trophic cascades. 
    more » « less
  5. Abstract The capacity of an apex predator to produce nonconsumptive effects (NCEs) in multiple prey trophic levels can create considerable complexity in nonconsumptive cascading interactions, but these effects are poorly studied. We examined such effects in a model food web where the apex predator (blue crabs) releases chemical cues in urine that affect both the intermediate consumer (mud crabs seek shelter) and the basal prey (oysters are induced to grow stronger shells). Shelter availability and predator presence were manipulated in a laboratory experiment to identify patterns in species interactions. Then, experimentally induced and uninduced oysters were planted across high‐quality and low‐quality habitats with varying levels of shelter availability and habitat heterogeneity to determine the consistency of these patterns in the field. Oyster shell thickening in response to blue crab chemical cues generally protected oysters from mud crab predation in both the laboratory and in field environments that differed in predation intensity, structural complexity, habitat heterogeneity, and predator composition. However, NCEs on the intermediate predator (greater use of refugia) opposed the NCEs on oyster prey in the interior of oyster reefs while still providing survival advantages to basal prey on reef edges and bare substrates. Thus, the combined effects of changing movement patterns of intermediate predators and morphological defenses of basal prey create complex, but predictable, patterns of NCEs across landscapes and ecotones that vary in structural complexity. Generalist predators that feed on multiple trophic levels are ubiquitous, and their potential effects on NCEs propagating simultaneously to different trophic levels must be quantified to understand the role of NCEs in food webs. 
    more » « less