skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulating High-Velocity Clouds in the Observational Plane: An Initial Study with the Smith Cloud
Abstract High-velocity clouds (HVCs) may fuel future star formation in the Milky Way, but they must first survive their passage through the hot halo. While recent work has improved our understanding of the survival criterion for cloud-wind interactions, few observational comparisons exist that test this criterion. We therefore present an initial comparison of simulations with the Smith Cloud (SC; d = 12.4 kpc, l, b = 40○, −13○) as mapped with the GALFA-HI survey. We use the Smith Cloud’s observed properties to motivate simulations of comparable clouds in wind tunnel simulations with Enzo-E, an MHD code. For both observations and simulations, we generate moment maps, characterize turbulence through a projected first-order velocity structure function (VSF), and do the same for HI column density with a normalized autocovariance function. We explore how initial cloud conditions (such as radius, metallicity, thermal pressure, viewing angle, and distance) affect these statistics, demonstrating that the small-scale VSF is sensitive to cloud turbulence while large scales depend on cloud bulk velocity and viewing angle. We find that some simulations reproduce key observational features (particularly the correlation between column density and velocity dispersion) but none match all observational probes at the same time (the large scales of the column density autocovariance is particularly challenging). We find that the simulated cloud (cloud C) showing growth via a turbulent radiative mixing layer (TRML) is the best match, implying the importance of TRML-mediated cooling for Milky Way HVCs. We conclude by suggesting improvements for simulations to better match observed HVCs.  more » « less
Award ID(s):
2307693
PAR ID:
10627861
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
ISSN:
0035-8711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the discovery of 11 high-velocity H I clouds at Galactic latitudes of 25°–30°, likely embedded in the Milky Way’s nuclear wind. The clouds are detected with deep Green Bank Telescope 21 cm observations of a 3.2° × 6.2° field around QSO 1H1613-097, located behind the northern Fermi Bubble. Our measurements reach 3sigma limits on NHI as low as 3.1 × 10^17/cm^2, more than twice as sensitive as previous HI studies of the bubbles. The clouds span −180 ≤v_LSR≤ −90 km/s and are the highest-latitude 21 cm high-velocity cloud detected inside the bubbles. Eight clouds are spatially resolved, showing coherent structures with sizes of 4–28 pc, peak column densities of log HI = 17.9–18.7, and HI masses up to 1470M⊙. Several exhibit internal velocity gradients. Their presence at such high latitudes is surprising, given the short expected survival times for clouds expelled from the Galactic center. These objects may be fragments of a larger cloud disrupted by interaction with the surrounding hot gas. 
    more » « less
  2. ABSTRACT Simulations of isolated giant molecular clouds (GMCs) are an important tool for studying the dynamics of star formation, but their turbulent initial conditions (ICs) are uncertain. Most simulations have either initialized a velocity field with a prescribed power spectrum on a smooth density field (failing to model the full structure of turbulence) or ‘stirred’ turbulence with periodic boundary conditions (which may not model real GMC boundary conditions). We develop and test a new GMC simulation setup (called turbsphere) that combines advantages of both approaches: we continuously stir an isolated cloud to model the energy cascade from larger scales, and use a static potential to confine the gas. The resulting cloud and surrounding envelope achieve a quasi-equilibrium state with the desired hallmarks of supersonic ISM turbulence (e.g. density PDF and a ∼k−2 velocity power spectrum), whose bulk properties can be tuned as desired. We use the final stirred state as initial conditions for star formation simulations with self-gravity, both with and without continued driving and protostellar jet feedback, respectively. We then disentangle the respective effects of the turbulent cascade, simulation geometry, external driving, and gravity/MHD boundary conditions on the resulting star formation. Without external driving, the new setup obtains results similar to previous simple spherical cloud setups, but external driving can suppress star formation considerably in the new setup. Periodic box simulations with the same dimensions and turbulence parameters form stars significantly slower, highlighting the importance of boundary conditions and the presence or absence of a global collapse mode in the results of star formation calculations. 
    more » « less
  3. The Magellanic Stream (MS), a tail of diffuse gas formed from tidal and ram pressure interactions between the Small and Large Magellanic Clouds (SMC and LMC) and the Halo of the Milky Way, is primarily composed of neutral atomic hydrogen (HI). The deficiency of dust and the diffuse nature of the present gas make molecular formation rare and difficult, but if present, could lead to regions potentially suitable for star formation, thereby allowing us to probe conditions of star formation similar to those at high redshifts. We search for HCO+ ,HCN,HNC,andC2H using the highest sensitivity observations of molecular absorption data from the Atacama Large Millimeter Array (ALMA) to trace these regions, comparing with HI archival data from the Galactic Arecibo L-Band Feed Array (GALFA) HI Survey and the Galactic All Sky Survey (GASS) to compare these environments in the MS to the HI column density threshold for molecular formation in the Milky Way. We also compare the line of sight locations with confirmed locations of stars, molecular hydrogen, and OI detections, though at higher sensitivities than the observations presented here. 
    more » « less
  4. null (Ed.)
    ABSTRACT We explore the survival of cool clouds in multiphase circumgalactic media. We revisit the ‘cloud-crushing problem’ in a large survey of simulations including radiative cooling, self-shielding, self-gravity, magnetic fields, and anisotropic Braginskii conduction and viscosity (with saturation). We explore a wide range of parameters including cloud size, velocity, ambient temperature and density, and a variety of magnetic field configurations and cloud turbulence. We find that realistic magnetic fields and turbulence have weaker effects on cloud survival; the most important physics is radiative cooling and conduction. Self-gravity and self-shielding are important for clouds that are initially Jeans-unstable, but largely irrelevant otherwise. Non-self-gravitating, realistically magnetized clouds separate into four regimes: (1) at low column densities, clouds evaporate rapidly via conduction; (2) a ‘failed pressure confinement’ regime, where the ambient hot gas cools too rapidly to provide pressure confinement for the cloud; (3) an ‘infinitely long-lived’ regime, in which the cloud lifetime becomes longer than the cooling time of gas swept up in the leading bow shock, so the cloud begins to accrete and grow; and (4) a ‘classical cloud destruction’ regime, where clouds are eventually destroyed by instabilities. In the final regime, the cloud lifetime can exceed the naive cloud-crushing time owing to conduction-induced compression. However, small and/or slow-moving clouds can also evaporate more rapidly than the cloud-crushing time. We develop simple analytic models that explain the simulated cloud destruction times in this regime. 
    more » « less
  5. Abstract Metals in the diffuse, ionized gas at the boundary between the Milky Way’s interstellar medium (ISM) and circumgalactic medium, known as the disk–halo interface (DHI), are valuable tracers of the feedback processes that drive the Galactic fountain. However, metallicity measurements in this region are challenging due to obscuration by the Milky Way ISM and uncertain ionization corrections that affect the total hydrogen column density. In this work, we constrain ionization corrections to neutral hydrogen column densities using precisely measured electron column densities from the dispersion measures of pulsars that lie in the same globular clusters as UV-bright targets with high-resolution absorption spectroscopy. We address the blending of absorption lines with the ISM by jointly fitting Voigt profiles to all absorption components. We present our metallicity estimates for the DHI of the Milky Way based on detailed photoionization modeling of the absorption from ionized metal lines and ionization-corrected total hydrogen columns. Generally, the gas clouds show a large scatter in metallicity, ranging between 0.04 and 3.2Z, implying that the DHI consists of a mixture of gaseous structures having multiple origins. We estimate the inflow and outflow timescales of the DHI ionized clouds to be 6–35 Myr. We report the detection of an infalling cloud with supersolar metallicity that suggests a Galactic fountain mechanism, whereas at least one low-metallicity outflowing cloud (Z< 0.1Z) poses a challenge for Galactic fountain and feedback models. 
    more » « less