High-coherence qubits, which can store and manipulate quantum states for long times with low error rates, are necessary building blocks for quantum computers. Here we propose a driven superconducting erasure qubit, the Floquet fluxonium molecule, which minimizes bit-flip rates through disjoint support of its qubit states and suppresses phase flips by a novel second-order insensitivity to flux-noise dephasing. We estimate the bit-flip, phase-flip, and erasure rates through numerical simulations, with predicted coherence times of approximately 50 ms in the computational subspace and erasure lifetimes of about . We also present a protocol for performing high-fidelity single-qubit rotation gates via additional flux modulation, on timescales of roughly 500 ns, and propose a scheme for erasure detection and logical readout. Our results demonstrate the utility of drives for building new qubits that can outperform their static counterparts. Published by the American Physical Society2024
more »
« less
Protocol for nearly deterministic parity projection on two photonic qubits
Photonic parity projection plays an important role in photonic quantum information processing. Nondestructive parity projections normally require high-fidelity controlled- gates between photonic and matter qubits, which can be experimentally demanding. In this paper, we propose a nearly deterministic parity projection protocol on two photonic qubits which only requires stable matter-photon controlled-phase gates. We also demonstrate that our protocol can tolerate moderate Gaussian phase errors in the controlled-phase gates as well as Pauli errors on the matter qubits. The fact that our protocol does not require perfect controlled- gates makes it more amenable to experimental implementation. Although we focus on photonic qubits, our protocol can be applied to any physical system or circuit with imperfect controlled- gates. Our protocol also provides a new optimization space for parity projection operations on various physical platforms, which is potentially beneficial for achieving high-fidelity parity projection operations. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2137953
- PAR ID:
- 10627862
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 6
- Issue:
- 4
- ISSN:
- 2643-1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Geometric locality is an important theoretical and practical factor for quantum low-density parity-check (qLDPC) codes that affects code performance and ease of physical realization. For device architectures restricted to two-dimensional (2D) local gates, naively implementing the high-rate codes suitable for low-overhead fault-tolerant quantum computing incurs prohibitive overhead. In this work, we present an error-correction protocol built on a bilayer architecture that aims to reduce operational overheads when restricted to 2D local gates by measuring some generators less frequently than others. We investigate the family of bivariate-bicycle qLDPC codes and show that they are well suited for a parallel syndrome-measurement scheme using fast routing with local operations and classical communication (LOCC). Through circuit-level simulations, we find that in some parameter regimes, bivariate-bicycle codes implemented with this protocol have logical error rates comparable to the surface code while using fewer physical qubits. Published by the American Physical Society2025more » « less
-
Superconducting qubits provide a promising approach to large-scale fault-tolerant quantum computing. However, qubit connectivity on a planar surface is typically restricted to only a few neighboring qubits. Achieving longer-range and more flexible connectivity, which is particularly appealing in light of recent developments in error-correcting codes, however, usually involves complex multilayer packaging and external cabling, which is resource intensive and can impose fidelity limitations. Here, we propose and realize a high-speed on-chip quantum processor that supports reconfigurable all-to-all coupling with a large on-off ratio. We implement the design in a four-node quantum processor, built with a modular design comprising a wiring substrate coupled to two separate qubit-bearing substrates, each including two single-qubit nodes. We use this device to demonstrate reconfigurable controlled- gates across all qubit pairs, with a benchmarked average fidelity of and best fidelity of , limited mainly by dephasing in the qubits. We also generate multiqubit entanglement, distributed across the separate modules, demonstrating GHZ-3 and GHZ-4 states with fidelities of and , respectively. This approach promises efficient scaling to larger-scale quantum circuits and offers a pathway for implementing quantum algorithms and error-correction schemes that benefit from enhanced qubit connectivity. Published by the American Physical Society2024more » « less
-
Quantum error correction is necessary to perform large-scale quantum computation but requires extremely large overheads in both space and time. High-rate quantum low-density-parity-check (qLDPC) codes promise a route to reduce qubit numbers, but performing computation while maintaining low space cost has required serialization of operations and extra time costs. In this work, we design fast and parallelizable logical gates for qLDPC codes and demonstrate their utility for key algorithmic subroutines such as the quantum adder. Our gate gadgets utilize transversal logical s between a data qLDPC code and a suitably constructed ancilla code to perform parallel Pauli product measurements (PPMs) on the data logical qubits. For hypergraph product codes, we show that the ancilla can be constructed by simply modifying the base classical codes of the data code, achieving parallel PPMs on a subgrid of the logical qubits with a lower space-time cost than existing schemes for an important class of circuits. Generalizations to 3D and 4D homological product codes further feature fast PPMs in constant depth. While prior work on qLDPC codes has focused on individual logical gates, we initiate the study of fault-tolerant compilation with our expanded set of native qLDPC code operations, constructing algorithmic primitives for preparing -qubit Greenberger-Horne-Zeilinger states and distilling or teleporting magic states with space overhead in and logical cycles, respectively. We further generalize this to key algorithmic subroutines, demonstrating the efficient implementation of quantum adders using parallel operations. Our constructions are naturally compatible with reconfigurable architectures such as neutral atom arrays, paving the way to large-scale quantum computation with low space and time overheads. Published by the American Physical Society2025more » « less
-
Dark matter may induce an event in an Earth-based detector, and its event rate is predicted to show an annual modulation as a result of the Earth’s orbital motion around the Sun. We searched for this modulation signature using the ionization signal of the DarkSide-50 liquid argon time projection chamber. No significant signature compatible with dark matter is observed in the electron recoil equivalent energy range above , the lowest threshold ever achieved in such a search. Published by the American Physical Society2024more » « less
An official website of the United States government

