Unlike ordinal-utility matching markets, which are well-developed from the viewpoint of both theory and practice, recent insights from a computer science perspective have left cardinal-utility matching markets in a state of flux. The celebrated pricing-based mechanism for one-sided cardinal-utility matching markets due to Hylland and Zeckhauser [1979](HZ), which had long eluded efficient algorithms, was finally shown to be intractable; the problem of computing an approximate equilibrium is PPAD-complete (Vazirani and Yannakakis [2021], Chen et al. [2022]). This led us to ask the question: is there an alternative, polynomial time, mechanism for one-sided cardinal-utility matching markets which achieves the desirable properties of HZ, i.e. (ex-ante) envyfreeness (EF) and Pareto-optimality (PO)? We show that the problem of finding an EF+PO lottery in a one-sided cardinal-utility matching market is by itself already PPAD-complete. However, a (2 + ǫ)-approximately envy-free and (exactly) Pareto-optimal lottery can be found in polynomial time using the Nash-bargaining-based mechanism of Hosseini and Vazirani [2022]. Moreover, the mechanism is also (2+ǫ)-approximately incentive compatible. We also present several results on two-sided cardinal-utility matching markets, including non-existence of EF+PO lotteries as well as existence of justified-envy-free and weak Pareto-optimal lotteries.
more »
« less
This content will become publicly available on May 14, 2026
COMPUTATIONAL COMPLEXITY OF THE HYLLAND-ZECKHAUSER MECHANISM FOR ONE-SIDED MATCHING MARKETS
In 1979, Hylland and Zeckhauser [26] gave a simple and general mechanism for a 6 one-sided matching market, given cardinal utilities of agents over goods. They use the power of a 7 pricing mechanism, which endows their mechanism with several desirable properties – it produces an 8 allocation that is Pareto optimal and envy-free, and the mechanism is incentive compatible in the 9 large. It therefore provides an attractive, off-the-shelf method for running an application involving 10 such a market. With matching markets becoming ever more prevalent and impactful, it is imperative 11 to characterize the computational complexity of this mechanism. 12 We present the following results: 13 1. A combinatorial, strongly polynomial time algorithm for the dichotomous case, i.e., 0/1 14 utilities, and more generally, when each agent’s utilities come from a bi-valued set. 15 2. An example that has only irrational equilibria; hence this problem is not in PPAD. 16 3. A proof of membership of the problem in the class FIXP; as a corollary we get that an 17 HZ equilibrium can always be expressed via algebraic numbers. For this purpose, we give 18 a new proof of the existence of an HZ equilibrium using Brouwer’s fixed point theorem; 19 the proof of Hylland and Zeckhauser used Kakutani’s fixed point theorem, which is more 20 involved. 21 4. A proof of membership of the problem of computing an approximate HZ equilibrium in the 22 class PPAD.
more »
« less
- Award ID(s):
- 2230414
- PAR ID:
- 10627972
- Publisher / Repository:
- SIAM
- Date Published:
- Journal Name:
- SIAM Journal of Computing
- ISSN:
- 0097-5397
- Subject(s) / Keyword(s):
- Computational Complexity Hylland-Zeckhauser Mechanism One-Sided Matching 24 Markets Brouwer’s fixed point theorem PPAD FIXP dichotomous utilities
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the fair division problem of allocating a mixed manna under additively separable piecewise linear concave (SPLC) utilities. A mixed manna contains goods that everyone likes and bads (chores) that everyone dislikes as well as items that some like and others dislike. The seminal work of Bogomolnaia et al. argues why allocating a mixed manna is genuinely more complicated than a good or a bad manna and why competitive equilibrium is the best mechanism. It also provides the existence of equilibrium and establishes its distinctive properties (e.g., nonconvex and disconnected set of equilibria even under linear utilities) but leaves the problem of computing an equilibrium open. Our main results are a linear complementarity problem formulation that captures all competitive equilibria of a mixed manna under SPLC utilities (a strict generalization of linear) and a complementary pivot algorithm based on Lemke’s scheme for finding one. Experimental results on randomly generated instances suggest that our algorithm is fast in practice. Given the [Formula: see text]-hardness of the problem, designing such an algorithm is the only non–brute force (nonenumerative) option known; for example, the classic Lemke–Howson algorithm for computing a Nash equilibrium in a two-player game is still one of the most widely used algorithms in practice. Our algorithm also yields several new structural properties as simple corollaries. We obtain a (constructive) proof of existence for a far more general setting, membership of the problem in [Formula: see text], a rational-valued solution, and an odd number of solutions property. The last property also settles the conjecture of Bogomolnaia et al. in the affirmative. Furthermore, we show that, if the number of either agents or items is a constant, then the number of pivots in our algorithm is strongly polynomial when the mixed manna contains all bads.more » « less
-
Banach's fixed point theorem for contraction maps has been widely used to analyze the convergence of iterative methods in non-convex problems. It is a common experience, however, that iterative maps fail to be globally contracting under the natural metric in their domain, making the applicability of Banach's theorem limited. We explore how generally we can apply Banach's fixed point theorem to establish the convergence of iterative methods when pairing it with carefully designed metrics. Our first result is a strong converse of Banach's theorem, showing that it is a universal analysis tool for establishing global convergence of iterative methods to unique fixed points, and for bounding their convergence rate. In other words, we show that, whenever an iterative map globally converges to a unique fixed point, there exists a metric under which the iterative map is contracting and which can be used to bound the number of iterations until convergence. We illustrate our approach in the widely used power method, providing a new way of bounding its convergence rate through contraction arguments. We next consider the computational complexity of Banach's fixed point theorem. Making the proof of our converse theorem constructive, we show that computing a fixed point whose existence is guaranteed by Banach's fixed point theorem is CLS-complete. We thus provide the first natural complete problem for the class CLS, which was defined in [Daskalakis, Papadimitriou 2011] to capture the complexity of problems such as P-matrix LCP, computing KKT-points, and finding mixed Nash equilibria in congestion and network coordination games.more » « less
-
Banach's fixed point theorem for contraction maps has been widely used to analyze the convergence of iterative methods in non-convex problems. It is a common experience, however, that iterative maps fail to be globally contracting under the natural metric in their domain, making the applicability of Banach's theorem limited. We explore how generally we can apply Banach's fixed point theorem to establish the convergence of iterative methods when pairing it with carefully designed metrics. Our first result is a strong converse of Banach's theorem, showing that it is a universal analysis tool for establishing global convergence of iterative methods to unique fixed points, and for bounding their convergence rate. In other words, we show that, whenever an iterative map globally converges to a unique fixed point, there exists a metric under which the iterative map is contracting and which can be used to bound the number of iterations until convergence. We illustrate our approach in the widely used power method, providing a new way of bounding its convergence rate through contraction arguments. We next consider the computational complexity of Banach's fixed point theorem. Making the proof of our converse theorem constructive, we show that computing a fixed point whose existence is guaranteed by Banach's fixed point theorem is CLS-complete. We thus provide the first natural complete problem for the class CLS, which was defined in [DP11] to capture the complexity of problems such as P-matrix LCP, computing KKT-points, and finding mixed Nash equilibria in congestion and network coordination games.more » « less
-
The utility of a match in a two-sided matching market often depends on a variety of characteristics of the two agents (e.g., a buyer and a seller) to be matched. In contrast to the matching market literature, this utility may best be modeled by a general matching utility distribution. In “Asymptotically Optimal Control of a Centralized Dynamic Matching Market with General Utilities,” Blanchet, Reiman, Shah, Wein, and Wu consider general matching utilities in the context of a centralized dynamic matching market. To analyze this difficult problem, they combine two asymptotic techniques: extreme value theory (and regularly varying functions) and fluid asymptotics of queueing systems. A key trade-off in this problem is market thickness: Do we myopically make the best match that is currently available, or do we allow the market to thicken in the hope of making a better match in the future while avoiding agent abandonment? Their asymptotic analysis derives quite explicit results for this problem and reveals how the optimal amount of market thickness increases with the right tail of the matching utility distribution and the amount of market imbalance. Their use of regularly varying functions also allows them to consider correlated matching utilities (e.g., buyers have positively correlated utilities with a given seller), which is ubiquitous in matching markets.more » « less
An official website of the United States government
