skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 20, 2026

Title: Modifying bacterial cellulose dispersions with deep eutectic solvent and pectin to tune the properties of open-celled foams
The overconsumption of plastics has led to a significant micro/nanoplastics pollution problem, driving an urgent need for sustainable alternatives. Synthetic polymer foams such as expanded polystyrene (EPS), polyethylene (PE), and polyurethane (PU), contribute significantly to plastic waste, often ending up in landfills after short service lives. In this article, we present a comprehensive investigation of bacterial cellulose (BC)/pectin composite foams, focusing on how modifications to the biopolymer network and macromolecular interactions influence colloidal and solid-state properties. By treating BC with a citric acid-based deep eutectic solvent (DES), we enhance its colloidal stability, achieving a zeta potential 81.2% more negative, and improve the compressive strength of the resulting foams by 23.8%. Introducing pectin further transforms the structure of the BC network, and significantly alters its electrostatic and rheological properties. The zeta potential reaches absolute values as high as 30.3 mV at 80% pectin, while the recoverability increases and the storage and loss moduli decrease with increasing pectin concentration. Small-angle X-ray scattering (SAXS) reveals modifications in the network structure that provide insight into the substantial changes in the morphological and mechanical properties of the foams. The resulting binary biopolymer foams demonstrate strength and stiffness rivaling those of synthetic polymer foams of similar density. Overall, we demonstrate the critical role of colloidal interactions in tuning the mechanical properties of binary biopolymer solid foams, and highlight the potential of this sustainable and biodegradable system to address pressing environmental issues caused by plastic waste.  more » « less
Award ID(s):
2332640
PAR ID:
10627978
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
RSC
Date Published:
Journal Name:
RSC Applied Polymers
Volume:
3
Issue:
2
ISSN:
2755-371X
Page Range / eLocation ID:
407 to 419
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Creating a sustainable economy for plastics demands the exploration of new strategies for efficient management of mixed plastic waste. The inherent incompatibility of different plastics poses a major challenge in plastic mechanical recycling, resulting in phase‐separated materials with inferior mechanical properties. Here, this study presents a robust and efficient dynamic crosslinking chemistry that effectively compatibilizes mixed plastics. Composed of aromatic sulfonyl azides, the dynamic crosslinker shows high thermal stability and generates singlet nitrene species in situ during solvent‐free melt‐extrusion, effectively promoting C─H insertion across diverse plastics. This new method demonstrates successful compatibilization of binary polymer blends and model mixed plastics, enhancing mechanical performance and improving phase morphology. It holds promise for managing mixed plastic waste, supporting a more sustainable lifecycle for plastics. 
    more » « less
  2. Lignin is the second-most abundant biopolymer in nature and remains a severely underutilized waste product of agriculture and paper production. Sulfur is the most underutilized byproduct of petroleum and natural gas processing industries. On their own, both sulfur and lignin exhibit very poor mechanical properties. In the current work, a strategy for preparing more durable composites of sulfur and lignin, LSx , is described. Composites LSx were prepared by reaction of allyl lignin with elemental sulfur, whereby some of the sulfur forms polysulfide crosslinks with lignin to yield a three-dimensional network. Even relatively small quantities (<5 wt%) of the polysulfide-crosslinked lignin network provides up to a 3.4-fold increase in mechanical reinforcement over sulfur alone, as measured by the storage moduli and flexural strength determined from dynamic mechanical analysis (temperature dependence and stress–strain analysis). Notably, LSx composites could be repeatedly remelted and recast after pulverization without loss of mechanical strength. These initial studies suggest potential practical applications of lignin and sulfur waste streams in the ongoing quest towards more sustainable, recyclable structural materials. 
    more » « less
  3. Chemical upcycling of plastic waste into high-value materials has the potential to contribute to a more sustainable plastic economy. We report the synthesis of high-value ionomers directly from commodity polyolefins enabled by amidyl radical mediated C−H functionalization. The use of thiosulfonates as a linchpin functionality for the group transfer of a variety of heteroaryl groups provided tunable incorporation of ionizable functionality onto a variety of polyolefin substrates, including postconsumer polyethylene packaging waste. Synthetic, structural, and thermomechanical studies provided a comprehensive understanding of both structure−reactivity and structure−property relationships for polyolefin ionomers. X-ray scattering experiments conducted in the solid and melt states confirm the presence of ionic multiplets that serve as physical cross-links both below and above the melting temperature of polyolefin crystallites. The incorporation of ionic groups into the polyolefins yielded materials with significantly enhanced melt strength and tensile toughness. We anticipate that this approach to access performance-advantaged polyolefin ionomers from commodity substrates or plastic waste will enhance sustainability efforts and lead to new opportunities for this versatile class of thermoplastics. 
    more » « less
  4. In recent years, nanocellulose has emerged as a sustainable and environmentally friendly alternative to traditional petroleum-derived structural polymers. Sourced either from plants, algae, or bacteria, nanocellulose can be processed into colloid, gel, film and fiber forms. However, the required fundamental understanding of process parameters that govern the morphology and structure–property relationships of nanocellulose systems, from colloidal suspensions to bulk materials, has not been developed and generalized for all forms of cellulose. This further hinders the more widespread adoption of this biopolymer in applications. Our study investigates the dispersion of cellulose nanofibers (CNFs) produced by a bacterial–yeast co-culture, in solvents, highlighting the role of thermodynamic interactions in influencing their colloidal behavior. By adjusting Hansen solubility parameters, we controlled the thermodynamic relationship between CNFs and solvents across various concentrations, studying the dilute to semi-dilute regimes. Rheological measurements revealed that the threshold at which a concentration-based regime transition occurs is distinctly solvent-dependent. Complementing rheological analysis with small angle X-ray scattering and zeta potential measurements, our findings reveal that enhancing CNF–solvent interactions increases excluded volume in the dilute regime, emphasizing the importance of the balance between fiber–fiber and fiber–solvent interactions. Moreover, we investigated the transition from colloidal to solid state by creating films from dispersions with varying interaction parameters in semi-dilute regimes. Through mechanical testing and scanning electron microscopy imaging of the fracture surfaces, we highlight the significance of electrokinetic effects in such transitions, as dispersions with higher electrokinetic stabilization gave rise to stronger and tougher films despite having less favorable thermodynamic interaction parameters. Our work provides insights into the thermodynamic and electrokinetic interplay that governs bacterial CNF dispersion, offering a foundation for future application and a deeper understanding of nanocellulose's colloidal and structure-property relationships. 
    more » « less
  5. Driven by the need for sustainable construction solutions, there is renewed interest in earth-based materials. Biopolymer stabilizers can enhance the rheological and structural properties of these materials to facilitate their use in 3D printing. This research examined the influence of sodium alginate on the stability, particle interaction, rheology, and 3D printability of kaolinite, a commonly found clay in soils deemed suitable for construction. Findings revealed that sodium alginate could boost electrostatic interactions to enhance the stability of kaolinite suspensions. This rise in repulsive potential energy could reduce storage modulus and yield stress by orders of magnitude. However, as the alginate content increased beyond its critical overlapping concentration (0.12 %–0.6 %), a reverse trend was observed, which was attributed to the formation of a three-dimensional polymer network. Furthermore, alginate addition shifted the “printability window” of kaolinite mixtures to higher solid contents, which has positive implications on the strength and shrinkage of the printable mixtures. 
    more » « less