Abstract BackgroundThe genetic information contained in the genome of an organism is organized in genes and regulatory elements that control gene expression. The genomes of multiple plants species have already been sequenced and the gene repertory have been annotated, however,cis-regulatory elements remain less characterized, limiting our understanding of genome functionality. These elements act as open platforms for recruiting both positive- and negative-acting transcription factors, and as such, chromatin accessibility is an important signature for their identification. ResultsIn this work we developed a transgenic INTACT [isolation of nuclei tagged in specific cell types] system in tetraploid wheat for nuclei purifications. Then, we combined the INTACT system together with the assay for transposase-accessible chromatin with sequencing [ATAC-seq] to identify open chromatin regions in wheat root tip samples. Our ATAC-seq results showed a large enrichment of open chromatin regions in intergenic and promoter regions, which is expected for regulatory elements and that is similar to ATAC-seq results obtained in other plant species. In addition, root ATAC-seq peaks showed a significant overlap with a previously published ATAC-seq data from wheat leaf protoplast, indicating a high reproducibility between the two experiments and a large overlap between open chromatin regions in root and leaf tissues. Importantly, we observed overlap between ATAC-seq peaks andcis-regulatory elements that have been functionally validated in wheat, and a good correlation between normalized accessibility and gene expression levels. ConclusionsWe have developed and validated an INTACT system in tetraploid wheat that allows rapid and high-quality nuclei purification from root tips. Those nuclei were successfully used to performed ATAC-seq experiments that revealed open chromatin regions in the wheat genome that will be useful to identify cis-regulatory elements. The INTACT system presented here will facilitate the development of ATAC-seq datasets in other tissues, growth stages, and under different growing conditions to generate a more complete landscape of the accessible DNA regions in the wheat genome. 
                        more » 
                        « less   
                    This content will become publicly available on April 18, 2026
                            
                            The genetic architecture of cell type–specific cis regulation in maize
                        
                    
    
            Gene expression and complex phenotypes are determined by the activity of cis-regulatory elements. However, an understanding of how extant genetic variants affect cis regulation remains limited. Here, we investigated the consequences of cis-regulatory diversity using single-cell genomics of more than 0.7 million nuclei across 172Zea mays(maize) inbreds. Our analyses pinpointed cis-regulatory elements distinct to domesticated maize and revealed how historical transposon activity has shaped the cis-regulatory landscape. Leveraging population genetics principles, we fine-mapped about 22,000 chromatin accessibility–associated genetic variants with widespread cell type–specific effects. Variants in TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR–binding sites were the most prevalent determinants of chromatin accessibility. Finally, integrating chromatin accessibility–associated variants, organismal trait variation, and population differentiation revealed how local adaptation has rewired regulatory networks in unique cellular contexts to alter maize flowering. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10627981
- Publisher / Repository:
- AAAS
- Date Published:
- Journal Name:
- Science
- Volume:
- 388
- Issue:
- 6744
- ISSN:
- 0036-8075
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            While considerable knowledge exists about the enzymes pivotal for C4photosynthesis, much less is known about thecis-regulation important for specifying their expression in distinct cell types. Here, we use single-cell-indexed ATAC-seq to identify cell-type-specific accessible chromatin regions (ACRs) associated with C4enzymes for five different grass species. This study spans four C4species, covering three distinct photosynthetic subtypes:Zea maysandSorghum bicolor(NADP-dependent malic enzyme),Panicum miliaceum(NAD-dependent malic enzyme),Urochloa fusca(phosphoenolpyruvate carboxykinase), along with the C3outgroupOryza sativa. We studied thecis-regulatory landscape of enzymes essential across all C4species and those unique to C4subtypes, measuring cell-type-specific biases for C4enzymes using chromatin accessibility data. Integrating these data with phylogenetics revealed diverse co-option of gene family members between species, showcasing the various paths of C4evolution. Besides promoter proximal ACRs, we found that, on average, C4genes have two to three distal cell-type-specific ACRs, highlighting the complexity and divergent nature of C4evolution. Examining the evolutionary history of these cell-type-specific ACRs revealed a spectrum of conserved and novel ACRs, even among closely related species, indicating ongoing evolution ofcis-regulation at these C4loci. This study illuminates the dynamic and complex nature ofcis-regulatory elements evolution in C4photosynthesis, particularly highlighting the intricatecis-regulatory evolution of key loci. Our findings offer a valuable resource for future investigations, potentially aiding in the optimization of C3crop performance under changing climatic conditions.more » « less
- 
            Wittkopp, Patricia (Ed.)Abstract Chromatin accessibility plays an important role in shaping gene expression, yet little is known about the genetic and molecular mechanisms that influence the evolution of chromatin configuration. Both local (cis) and distant (trans) genetic influences can in principle influence chromatin accessibility and are based on distinct molecular mechanisms. We, therefore, sought to characterize the role that each of these plays in altering chromatin accessibility in 2 closely related sea urchin species. Using hybrids of Heliocidaris erythrogramma and Heliocidaris tuberculata, and adapting a statistical framework previously developed for the analysis of cis and trans influences on the transcriptome, we examined how these mechanisms shape the regulatory landscape at 3 important developmental stages, and compared our results to similar analyses of the transcriptome. We found extensive cis- and trans-based influences on evolutionary changes in chromatin, with cis effects generally larger in effect. Evolutionary changes in accessibility and gene expression are correlated, especially when expression has a local genetic basis. Maternal influences appear to have more of an effect on chromatin accessibility than on gene expression, persisting well past the maternal-to-zygotic transition. Chromatin accessibility near gene regulatory network genes appears to be distinctly regulated, with trans factors appearing to play an outsized role in the configuration of chromatin near these genes. Together, our results represent the first attempt to quantify cis and trans influences on evolutionary divergence in chromatin configuration in an outbred natural study system and suggest that chromatin regulation is more genetically complex than was previously appreciated.more » « less
- 
            Knowledge of locations and activities ofcis-regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our Validated Systematic Integration (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene regulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate regression, was used to estimate epigenetic state regulatory potential (esRP) scores for each cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbor distinctive transcription factor binding motifs that are similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific patterns of epigenetic evolution. Finally, we show that comparisons of the epigenetic landscape between species can reveal elements with similar roles in regulation, even in the absence of genomic sequence alignment.more » « less
- 
            Abstract Gene regulation in eukaryotes is partly shaped by the 3D organization of chromatin within the cell nucleus. Distal interactions between cis-regulatory elements and their target genes are widespread, and many causal loci underlying heritable agricultural traits have been mapped to distal non-coding elements. The biology underlying chromatin loop formation in plants is poorly understood. Dissecting the sequence features that mediate distal interactions is an important step toward identifying putative molecular mechanisms. Here, we trained GenomicLinks, a deep learning model, to identify DNA sequence features predictive of 3D chromatin interactions in maize. We found that the presence of binding motifs of specific transcription factor classes, especially bHLH, is predictive of chromatin interaction specificities. Using an in silico mutagenesis approach we show the removal of these motifs from loop anchors leads to reduced interaction probabilities. We were able to validate these predictions with single-cell co-accessibility data from different maize genotypes that harbor natural substitutions in these TF binding motifs. GenomicLinks is currently implemented as an open-source web tool, which should facilitate its wider use in the plant research community.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
