skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Digital assessments for children and adolescents with ADHD: a scoping review
IntroductionIn spite of rapid advances in evidence-based treatments for attention deficit hyperactivity disorder (ADHD), community access to rigorous gold-standard diagnostic assessments has lagged far behind due to barriers such as the costs and limited availability of comprehensive diagnostic evaluations. Digital assessment of attention and behavior has the potential to lead to scalable approaches that could be used to screen large numbers of children and/or increase access to high-quality, scalable diagnostic evaluations, especially if designed using user-centered participatory and ability-based frameworks. Current research on assessment has begun to take a user-centered approach by actively involving participants to ensure the development of assessments that meet the needs of users (e.g., clinicians, teachers, patients). MethodsThe objective of this mapping review was to identify and categorize digital mental health assessments designed to aid in the initial diagnosis of ADHD as well as ongoing monitoring of symptoms following diagnosis. ResultsResults suggested that the assessment tools currently described in the literature target both cognition and motor behaviors. These assessments were conducted using a variety of technological platforms, including telemedicine, wearables/sensors, the web, virtual reality, serious games, robots, and computer applications/software. DiscussionAlthough it is evident that there is growing interest in the design of digital assessment tools, research involving tools with the potential for widespread deployment is still in the early stages of development. As these and other tools are developed and evaluated, it is critical that researchers engage patients and key stakeholders early in the design process.  more » « less
Award ID(s):
2245495
PAR ID:
10628006
Author(s) / Creator(s):
; ;
Publisher / Repository:
Frontiers in Digital Health
Date Published:
Journal Name:
Frontiers in Digital Health
Volume:
6
ISSN:
2673-253X
Subject(s) / Keyword(s):
ADHD, assessment, digital health, computer, technology, attention, behavior, hyperactivity
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BackgroundReliable and specific biomarkers that can distinguish autism spectrum disorders (ASDs) from commonly co-occurring attention-deficit/hyperactivity disorder (ADHD) are lacking, causing misses and delays in diagnosis, and reducing access to interventions and quality of life. AimsTo examine whether an innovative, brief (1-min), videogame method called Computerised Assessment of Motor Imitation (CAMI), can identify ASD-specific imitation differences compared with neurotypical children and children with ADHD. MethodThis cross-sectional study used CAMI alongside standardised parent-report (Social Responsiveness Scale, Second Edition) and observational measures of autism (Autism Diagnostic Observation Schedule-Second Edition; ADOS-2), ADHD (Conners) and motor ability (Physical and Neurological Examination for Soft Signs). The sample comprised 183 children aged 7–13 years, with ADHD (without ASD), with ASD (with and without ADHD) and who were neurotypical. ResultsRegardless of co-occurring ADHD, children with ASD showed poorer CAMI performance than neurotypical children (P< 0.0001; adjustedR2= 0.28), whereas children with ADHD and neurotypical children showed similar CAMI performance. Receiver operating curve and support vector machine analyses showed that CAMI distinguishes ASD from both neurotypical children (80% true positive rate) and children with ADHD (70% true positive rate), with a high success rate significantly above chance. Among children with ASD, poor CAMI performance was associated with increased autism traits, particularly ADOS-2 measures of social affect and restricted and repetitive behaviours (adjustedR2= 0.23), but not with ADHD traits or motor ability. ConclusionsFour levels of analyses confirm that poor imitation measured by the low-cost and scalable CAMI method specifically distinguishes ASD not only from neurotypical development, but also from commonly co-occurring ADHD. 
    more » « less
  2. Abstract Although digital health solutions are increasingly popular in clinical psychiatry, one application that has not been fully explored is the utilization of survey technology to monitor patients outside of the clinic. Supplementing routine care with digital information collected in the “clinical whitespace” between visits could improve care for patients with severe mental illness. This study evaluated the feasibility and validity of using online self-report questionnaires to supplement in-person clinical evaluations in persons with and without psychiatric diagnoses. We performed a rigorous in-person clinical diagnostic and assessment battery in 54 participants with schizophrenia (N = 23), depressive disorder (N = 14), and healthy controls (N = 17) using standard assessments for depressive and psychotic symptomatology. Participants were then asked to complete brief online assessments of depressive (Quick Inventory of Depressive Symptomatology) and psychotic (Community Assessment of Psychic Experiences) symptoms outside of the clinic for comparison with the ground-truth in-person assessments. We found that online self-report ratings of severity were significantly correlated with the clinical assessments for depression (two assessments used: R = 0.63, p < 0.001; R = 0.73, p < 0.001) and psychosis (R = 0.62, p < 0.001). Our results demonstrate the feasibility and validity of collecting psychiatric symptom ratings through online surveys. Surveillance of this kind may be especially useful in detecting acute mental health crises between patient visits and can generally contribute to more comprehensive psychiatric treatment. 
    more » « less
  3. BackgroundAs artificial intelligence (AI) tools are integrated more widely in psychiatric medicine, it is important to consider the impact these tools will have on clinical practice. ObjectiveThis study aimed to characterize physician perspectives on the potential impact AI tools will have in psychiatric medicine. MethodsWe interviewed 42 physicians (21 psychiatrists and 21 family medicine practitioners). These interviews used detailed clinical case scenarios involving the use of AI technologies in the evaluation, diagnosis, and treatment of psychiatric conditions. Interviews were transcribed and subsequently analyzed using qualitative analysis methods. ResultsPhysicians highlighted multiple potential benefits of AI tools, including potential support for optimizing pharmaceutical efficacy, reducing administrative burden, aiding shared decision-making, and increasing access to health services, and were optimistic about the long-term impact of these technologies. This optimism was tempered by concerns about potential near-term risks to both patients and themselves including misguiding clinical judgment, increasing clinical burden, introducing patient harms, and creating legal liability. ConclusionsOur results highlight the importance of considering specialist perspectives when deploying AI tools in psychiatric medicine. 
    more » « less
  4. Abstract ObjectiveOnline patient portals become important during disruptions to in-person health care, like when cases of coronavirus disease 2019 (COVID-19) and other respiratory viruses rise, yet underlying structural inequalities associated with race, socio-economic status, and other socio-demographic characteristics may affect their use. We analyzed a population-based survey to identify disparities within the United States in access to online portals during the early period of COVID-19 in 2020. Materials and MethodsThe National Cancer Institute fielded the 2020 Health and Information National Trends Survey from February to June 2020. We conducted multivariable analysis to identify socio-demographic characteristics of US patients who were offered and accessed online portals, and reasons for nonuse. ResultsLess than half of insured adult patients reported accessing an online portal in the prior 12 months, and this was less common among patients who are male, are Hispanic, have less than a college degree, have Medicaid insurance, have no regular provider, or have no internet. Reasons for nonuse include: wanting to speak directly to a provider, not having an online record, concerns about privacy, and discomfort with technology. DiscussionDespite the rapid expansion of digital health technologies due to COVID-19, we found persistent socio-demographic disparities in access to patient portals. Ensuring that digital health tools are secure, private, and trustworthy would address some patient concerns that are barriers to portal access. ConclusionExpanding the use of online portals requires explicitly addressing fundamental inequities to prevent exacerbating existing disparities, particularly during surges in cases of COVID-19 and other respiratory viruses that tax health care resources. 
    more » « less
  5. Language in autism is heterogeneous, with a significant proportion of individuals having structural language difficulties and inclusion of language impairment as a specifier under Diagnostic and Statistical Manual of Mental Disorders (5th ed.) criteria for autism. This systematic review asked: What are the reporting patterns of variables pertaining to structural language in autism prior to and after publication of the Diagnostic and Statistical Manual of Mental Disorders (5th ed.)? What norm-referenced assessments does research use to characterize the language abilities of autistic individuals with respect to language impairment? This preregistered review (PROSPERO: CRD42021260394) followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Searches took place in September 2022 and included Linguistics and Language Behavior Abstracts, PsycINFO, PubMed, and the Directory of Open Access Journals. Search terms included three essential concepts: autism, language, and age. Two coders independently screened and evaluated articles. Searches yielded 57 qualifying studies, with mostly consistent reporting practices prior to and after the Diagnostic and Statistical Manual of Mental Disorders (5th ed.). Studies varied in how they defined language groups and in what norm-referenced measures they used. Interpreting research on structural language in autism requires attention to diagnostic and grouping criteria. Although inconsistency in reporting in original studies limited this review, better understanding the available information on structural language in autistic individuals aged 3–21 years may support identification of language needs. Lay abstractUnder the Diagnostic and Statistical Manual of Mental Disorders (5th ed.), language impairment can co-occur with autism. It is not yet clear how research defines, reports, and characterizes structural language abilities of autistic individuals eligible for school-based special education services (aged 3–21 years) in the United States. In the United States, students typically must be formally diagnosed to be eligible for services and supports. However, the quality of diagnosis is only as good as the research evidence on which diagnosis depends. To evaluate evidence quality, we examined how studies of school-aged autistic individuals report assessments of language ability. This systematic review included 57 studies using English language age-referenced assessments used to measure structural language. Findings showed many differences across studies in how language abilities were measured and reported. Also, none of the studies fully reported the variables relevant to characterizing language impairment. Outcomes were similar across versions of the Diagnostic and Statistical Manual of Mental Disorders. Findings indicate that researchers and clinicians should pay attention to reporting diagnostic and grouping criteria. Carefully interpreting research evidence is critical for ensuring that diagnostic criteria and supports are representative of and accessible to autistic individuals and relevant parties. 
    more » « less