skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chemiexcitation Acceleration of 1,2‐Dioxetanes by Spiro‐Fused Six‐Member Rings with Electron‐Withdrawing Motifs
Abstract The chemiluminescent light‐emission pathway of phenoxy‐1,2‐dioxetane luminophores attracts growing interest within the scientific community. Dioxetane probes undergoing rapid flash‐type chemiexcitation exhibit higher detection sensitivity than those with a slow glow‐type chemiexcitation rate. We discovered that dioxetanes fused to non‐strained six‐member rings, with hetero atoms or inductive electron‐withdrawing groups, present both accelerated chemiexcitation rates and elevated chemical stability compared to dioxetanes fused to four‐member strained rings. DFT computational simulations supported the chemiexcitation acceleration observed by spiro‐fused six‐member rings with inductive electron‐withdrawing groups of dioxetanes. Specifically, a spiro‐dioxetane with a six‐member sulfone ring exhibited a chemiexcitation rate 293‐fold faster than that of spiro‐adamantyl‐dioxetane. A turn‐ON dioxetane probe for the detection of the enzyme β‐galactosidase, containing the six‐member sulfone unit, exhibited a S/N value of 108 in LB cell growth medium. This probe demonstrated a substantial increase in detection sensitivity towardsE. colibacterial cells expressing β‐galactosidase, with an LOD value that is 44‐fold more sensitive than that obtained by the adamantyl counterpart. The accelerated chemiexcitation and the elevated chemical stability presented by dioxetane containing a spiro‐fused six‐member ring with a sulfone inductive electron‐withdrawing group, make it an ideal candidate for designing efficient turn‐on chemiluminescent probes with exceptionally high detection sensitivity.  more » « less
Award ID(s):
2153972
PAR ID:
10628043
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley VCH
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
63
Issue:
46
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Next generation chemiluminescent iridium 1,2‐dioxetane complexes have been developed which consist of the Schaap's 1,2‐dioxetane scaffold directly attached to the metal center. This was achieved by synthetically modifying the scaffold precursor with a phenylpyridine moiety, which can act as a ligand. Reaction of this scaffold ligand with the iridium dimer [Ir(BTP)2(μ‐Cl)]2(BTP=2‐(benzo[b]thiophen‐2‐yl)pyridine) yielded isomers which depict ligation through either the cyclometalating carbon or, interestingly, the sulfur atom of one BTP ligand. Their corresponding 1,2‐dioxetanes display chemiluminescent responses in buffered solutions, exhibiting a single, red‐shifted peak at 600 nm. This triplet emission was effectively quenched by oxygen, yielding in vitro Stern‐Volmer constants of 0.1 and 0.009 mbar−1for the carbon‐bound and sulfur compound, respectively. Lastly, the sulfur‐bound dioxetane was further utilized for oxygen sensing in muscle tissue of living mice and xenograft models of tumor hypoxia, depicting the ability of the probe chemiluminescence to penetrate biological tissue (total flux ∼106 p/s). 
    more » « less
  2. null (Ed.)
    The oxidative photocyclization of aromatic Schiff bases was investigated as a potential method for synthesis of phenanthridine derivatives, biologically active compounds with medical applications. Although it is possible to prepare the desired phenanthridines using such an approach, the reaction has to be performed in the presence of acid and TEMPO to increase reaction rate and yield. The reaction kinetics was studied on a series of substituted imines covering the range from electron-withdrawing to electron-donating substituents. It was found that imines with electron-withdrawing substituents react one order of magnitude faster than imines bearing electron-donating groups. The 1H NMR monitoring of the reaction course showed that a significant part of the Z isomer in the reaction is transformed into E isomer which is more prone to photocyclization. The portion of the Z isomer transformed showed a linear correlation to the Hammett substituent constants. The reaction scope was expanded towards synthesis of larger aromatic systems, namely to the synthesis of strained aromatic systems, e.g., helicenes. In this respect, it was found that the scope of oxidative photocyclization of aromatic imines is limited to the formation of no more than five ortho-fused aromatic rings. 
    more » « less
  3. Abstract Chemiluminescence imaging of bioanalytes using spiroadamantane 1,2‐dioxetanes has gained significant attention due to improved signal‐to‐noise ratios and imaging depth compared to excitation‐based probes, as well as their modifiable scaffolds that offer analyte‐specific responses and tunable emissive properties. Among several strategies employed to amplify signals under aqueous conditions and to shift the emission into the bio‐relevant red region, energy transfer to an adjacent fluorophore is a popular and effective method. This Minireview highlights spiroadamantane 1,2‐dioxetane‐based probes that operate via an energy transfer mechanism to detect bioanalytes both in vitro and in vivo. Probes that display both non‐covalent and covalent interactions with fluorophores, as well as their applications in imaging specific analytes will be discussed. 
    more » « less
  4. Abstract The chemical reduction of a bilayer spironanographene,spiro‐NG(C137H120), with Na and K metals in the presence of [2.2.2]cryptand to yield [Na+(2.2.2‐cryptand)](C137H121) (1) and [K+(2.2.2‐cryptand)](C137H121) (2), respectively, is reported. X‐ray crystallography reveals the formation of a new “naked” anion (spiro‐NGH), in which spirocyclic ring cleavage and subsequent hydrogenation have occurred. Density Functional Theory (DFT) calculations suggest that the generation of the radical anion of the parent nanographene (spiro‐NG), upon electron acceptance from Na and K metals, induces the cleavage of the strained spirobifluorene core. The resulting spin density localizes on a particular carbon atom, previously attached to the spiranic sp3carbon atom, facilitating a site‐specific hydrogenation to afford (spiro‐NGH). The electrostatic potential map of this anion reveals electron density concentrated at the five‐membered ring of the readily formed indenyl fragment, thus enhancing the aromaticity of the system. Furthermore, nuclear magnetic resonance (NMR) and UV–vis absorption spectroscopy experiments allowed to follow the in situ reduction and hydrogenation processes in detail. 
    more » « less
  5. Abstract Certain archaeal cells possess external proteinaceous sheath, whose structure and organization are both unknown. By cellular cryogenic electron tomography (cryoET), here we have determined sheath organization of the prototypical archaeon,Methanospirillum hungatei. Fitting of Alphafold-predicted model of the sheath protein (SH) monomer into the 7.9 Å-resolution structure reveals that the sheath cylinder consists of axially stacked β-hoops, each of which is comprised of two to six 400 nm-diameter rings of β-strand arches (β-rings). With both similarities to and differences from amyloid cross-β fibril architecture, each β-ring contains two giant β-sheets contributed by ~ 450 SH monomers that entirely encircle the outer circumference of the cell. Tomograms of immature cells suggest models of sheath biogenesis: oligomerization of SH monomers into β-ring precursors after their membrane-proximal cytoplasmic synthesis, followed by translocation through the unplugged end of a dividing cell, and insertion of nascent β-hoops into the immature sheath cylinder at the junction of two daughter cells. 
    more » « less