Radical cations generated from the oxidation of CC π-bonds are synthetically useful reactive intermediates for C–C and C–X bond formation. Radical cation formation, induced by sub-stoichiometric amounts of external oxidant, are important intermediates in the Woodward–Hoffmann thermally disallowed [2 + 2] cycloaddition of electron-rich alkenes. Using density functional theory (DFT), we report the detailed mechanisms underlying the intermolecular heterodimerisation of anethole and β-methylstyrene to give unsymmetrical, tetra-substituted cyclobutanes. Reactions between trans -alkenes favour the all-trans adduct, resulting from a kinetic preference for anti -addition reinforced by reversibility at ambient temperatures since this is also the thermodynamic product; on the other hand, reactions between a trans -alkene and a cis -alkene favour syn -addition, while exocyclic rotation in the acyclic radical cation intermediate is also possible since C–C forming barriers are higher. Computations are consistent with the experimental observation that hexafluoroisopropanol ( HFIP ) is a better solvent than acetonitrile, in part due to its ability to stabilise the reduced form of the hypervalent iodine initiator by hydrogen bonding, but also through the stabilisation of radical cationic intermediates along the reaction coordinate.
more »
« less
Stereoselective Radical Acylfluoroalkylation of Bicyclobutanes via N‐Heterocyclic Carbene Catalysis
Abstract Cyclobutanes are prominent structural components in natural products and drug molecules. With the advent of strain‐release‐driven synthesis, ring‐opening reactions of bicyclo[1.1.0]butanes (BCBs) provide an attractive pathway to construct these three‐dimensional structures. However, the stereoselective difunctionalization of the central C−C σ‐bonds remains challenging. Reported herein is a covalent‐based organocatalytic strategy that exploits radical NHC catalysis to achieve diastereoselective acylfluoroalkylation of BCBs under mild conditions. The Breslow enolate acts as a single electron donor and provides an NHC‐bound ketyl radical with appropriate steric hindrance, which effectively distinguishes between the two faces of transient cyclobutyl radicals. This operationally simple method tolerates various fluoroalkyl reagents and common functional groups, providing a straightforward access to polysubstituted cyclobutanes (75 examples, up to >19 : 1 d.r.). The combined experimental and theoretical investigations of this organocatalytic system confirm the formation of the NHC‐derived radical and provide an understanding of how stereoselective radical‐radical coupling occurs.
more »
« less
- Award ID(s):
- 2153972
- PAR ID:
- 10628047
- Publisher / Repository:
- Wiley VCH
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 64
- Issue:
- 4
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Tuning solubility and mechanical activation alters the stereoselectivity of the [2 + 2] photochemical cycloaddition of acenaphthylene. Photomechanochemical conditions produce the syn cyclobutane, whereas the solid-state reaction in the absence of mechanical activation provides the anti . When the photochemical dimerization occurs in a solubilizing organic solvent, there is no selectivity. Dimerization in H 2 O, in which acenaphthylene is insoluble, provides the anti product. DFT calculations reveal that insoluble and solid-state reactions proceed via a covalently bonded excimer, which drives anti selectivity. Alternatively, the noncovalently bound syn conformer is more mechanosusceptible than the anti , meaning it experiences greater destabilization, thereby producing the syn product under photomechanochemical conditions. Cyclobutanes are important components of biologically active natural products and organic materials, and we demonstrate stereoselective methods for obtaining syn or anti cyclobutanes under mild conditions and without organic solvents. With this work, we validate photomechanochemistry as a viable new direction for the preparation of complex organic scaffolds.more » « less
-
Fluorine is an essential component in many highly effective pharmaceutical drugs, however the selective fluorination of organic molecules poses a challenge. A common route to installing fluorine involves C-F bond cleavage, which is often accomplished using second- or third-row transition metals. Base metal catalysts such as nickel may provide a facile, sustainable, and cheaper alternative for C-F activation. Monodentate N-heterocyclic carbene (NHC) nickel complexes have been reported to undergo C-F activation, however bis-bidentate NHC (RNHC2R1; R, R1 = alkyl or aryl) analogs remain underexplored. This work reports a series of RNHC2R1 nickel(0) complexes with various R1 linkers to determine the effect of the linker on the C-F activation of hexafluorobenzene. Comparisons include a reference nickel(0) complex with two monodentate NHC ligands, and results show that low-valent nickel NHC complexes readily break the C-F bond in C6F6 via oxidative addition. Crystallographic and NMR characterization demonstrate that ligand design and denticity affect the cis versus trans orientation of the final product, with the possibility for additional ligand C-H activation.more » « less
-
Electrochemical, fully stereoselective P(V)‐radical hydrophosphorylation of olefins and carbonyl compounds using a P(V) reagent is disclosed. By strategically selecting the anode material, radical reactivity is accessible for alkene hydrophosphorylation whereas a polar pathway operates for ketone hydrophosphorylation. The mechanistic intricacies of these chemoselective transformations were explored in‐depth.more » « less
-
Photoenzymatic catalysts are attractive for stereoselective radical reactions because the transformation occurs within tunable enzyme active sites. When using flavoproteins for non-natural photoenzymatic reactions, reductive mechanisms are often used for radical initiation. Oxidative mechanisms for radical formation would enable abundant functional groups, such as amines and carboxylic acids, to serve as radical precursors. However, excited state flavin is short-lived in many proteins because of rapid quenching by the protein scaffold. Here we report that adding an exogenous Ru(bpy)3 2+ cofactor to flavin-dependent ‘ene’-reductases enables the redox-neutral decarboxylative coupling of amino acids with vinylpyridines with high yield and enantioselectivity. Additionally, stereo-complementary enzymes are found to provide access to both enantiomers of the product. Mechanistic studies indicate that Ru(bpy)3 2+ binds to the protein, helping to localize radical formation to the enzyme’s active site. This work expands the types of transformation that can be rendered asymmetric using photoenzymatic catalysis and provides an intriguing mechanism of radical initiation.more » « less
An official website of the United States government

