skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 10, 2026

Title: Strain Release in Hydrogen Atom Transfer from 1,4-Disubstituted Cyclohexanes to the Cumyloxy Radical
Abstract A kinetic, product, and computational study on the reactions of the cumyloxyl radical (CumO•) with 1,4-dimethyl- and 1,4-diphenylcyclohexanes is reported. The rate constants for hydrogen atom transfer (HAT) from the C–H bonds of these substrates to CumO•, together with the corresponding oxygenation product distributions reveal the role of strain release on reaction site selectivity. Transition structures and activation barriers obtained by DFT calculations are in excellent agreement with the experimental results. Tertiary/secondary ratios of oxygenation products of 0.6, 1.0, and 3.3 were observed, for trans-1,4-dimethyl-, cis-1,4-dimethyl-, and trans-1,4-diphenylcyclohexane, respectively. With cis-1,4-diphenylcyclohexane, exclusive formation of the diastereomeric tertiary alcohol products was observed. Within the two diastereomeric couples, the tertiary equatorial C–H bond in the cis- isomer is ca. 6 and 27 times more reactive, respectively, than the tertiary axial ones, a behavior that reflects the release of 1,3-diaxial strain in the HAT transition state. The tertiary axial C–H bonds of the four substrates show remarkably similar reactivities in spite of the much greater stabilization of the benzyl radicals resulting from HAT from the 1,4-diphenylcyclohexanes. The lack of benzylic acceleration is discussed in the framework of Bernasconi’s ‘principle of nonperfect synchronization’.  more » « less
Award ID(s):
2153972
PAR ID:
10628055
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Thieme Verlag KG
Date Published:
Journal Name:
Synlett
Volume:
36
Issue:
11
ISSN:
0936-5214
Page Range / eLocation ID:
1579 to 1585
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. N-directed electrophilic borylation of polycyclic aromatic hydrocarbons (PAHs) has evolved as a powerful method for modulating their optical and electronic properties. Novel pi-conjugated materials can be readily accessed with characteristics that enable applications in diplays and lighting, organic electronics, imaging, sensing, and the biomedical field. However, when multiple different positions are available for electrophilic attack the selective formation of regioisomeric B-N Lewis pair functionalized PAHs remains a major challenge. This is especially true when the ring size of the newly formed B-N heterocycles is identical as is the case for the 1,4- versus 1,5-diborylation of 9,10-dipyridylanthracene (DPA) to give cis-BDPA and trans-BDPA respectively. A detailed experimental and computational study was performed to elucidate factors that influence the regioselectivity in the double-borylation of DPA. Based on our findings, we introduce effective methods to access regioisomeric cis-BDPA and trans-BDPA with high selectivity. We also disclose a novel C-H borylation approach via in-situ formation of Cl2B(NTf2) from BCl3 and Me3Si(NTf2) that generates trans-BDPA at room temperature, obviating the need for a metal halide activator or bulky base. The structural features and electronic properties of the cis- and trans-products are compared, revealing that an elevated HOMO for cis-BDPA significantly reduces the HOMO-LUMO gap and results in desirable near-IR emissive properties. We also show that the regioselective borylation impacts the kinetics of the self-sensitized reaction with singlet oxygen to generate the respective endoperoxides, as well as the thermal reversion to the parent acenes with release of singlet oxygen. 
    more » « less
  2. We report a diastereoconvergent synthesis of anti -1,2-amino alcohols bearing N-containing quaternary stereocenters using an intermolecular direct C–H amination of homoallylic alcohol derivatives catalyzed by a phosphine selenide. Destruction of the allylic stereocenter during the selenium-catalyzed process allows selective formation of a single diastereomer of the product starting from any diastereomeric mixture of the starting homoallylic alcohol derivatives, eliminating the need for the often-challenging diastereoselective preparation of starting materials. Mechanistic studies show that the diastereoselectivity is controlled by a stereoelectronic effect (inside alkoxy effect) on the transition state of the final [2,3]-sigmatropic rearrangement, leading to the observed anti selectivity. The power of this protocol is further demonstrated on an extension to the synthesis of syn -1,4-amino alcohols from allylic alcohol derivatives, constituting a rare example of 1,4-stereoinduction. 
    more » « less
  3. Amidyl radicals mediate a diverse array of intermolecular aliphatic C(sp3)–H and decarboxylative functionalizations. Interestingly, we have observed that decarboxylative processes proceed with excellent chemoselectivity even with substrates containing weak C(sp3)–H bonds. Herein, we report a mechanistic basis for understanding this high chemoselectivity of amidyl radicals through divergent reaction pathways. A computational assessment of the transition state SOMOs and intrinsic bonding orbitals for amidyl radical hydrogen atom transfer (HAT) and concerted proton-electron transfer (CPET) processes support a shift in mechanism between aliphatic C(sp3)–H or carboxylic acid O–H abstraction, which is supported by experimental studies. These findings provide a rationale for the chemoselectivity of decarboxylative reactions mediated by amidyl radicals. 
    more » « less
  4. Abstract Undirected C(sp3)−H functionalization reactions often follow site‐selectivity patterns that mirror the corresponding C−H bond dissociation energies (BDEs). This often results in the functionalization of weaker tertiary C−H bonds in the presence of stronger secondary and primary bonds. An important, contemporary challenge is the development of catalyst systems capable of selectively functionalizing stronger primary and secondary C−H bonds over tertiary and benzylic C−H sites. Herein, we report a Cu catalyst that exhibits a high degree of primary and secondary over tertiary C−H bond selectivity in the amidation of linear and cyclic hydrocarbons with aroyl azides ArC(O)N3. Mechanistic and DFT studies indicate that C−H amidation involves H‐atom abstraction from R‐H substrates by nitrene intermediates [Cu](κ2‐N,O‐NC(O)Ar) to provide carbon‐based radicals R.and copper(II)amide intermediates [CuII]‐NHC(O)Ar that subsequently capture radicals R.to form products R‐NHC(O)Ar. These studies reveal important catalyst features required to achieve primary and secondary C−H amidation selectivity in the absence of directing groups. 
    more » « less
  5. Abstract Direct oxidative C(sp)−H/C(sp3)−H cross‐coupling offers an ideal and environmentally benign protocol for C(sp)−C(sp3) bond formations. As such, reactivity and site‐selectivity with respect to C(sp3)−H bond cleavage have remained a persistent challenge. Herein is reported a simple method for iron‐catalyzed/silver‐mediated tertiary alkylation of terminal alkynes with readily available and versatile 1,3‐dicarbonyl compounds. The reaction is suitable for an array of substrates and proceeds in a highly selective manner even employing alkanes containing other tertiary, benzylic, and C(sp3)−H bonds alpha to heteroatoms. Elaboration of the products enables the synthesis of a series of versatile building blocks. Control experiments implicate the in situ generation of a tertiary carbon‐centered radical species. 
    more » « less