Abstract By the Aharonov–Casher theorem, the Pauli operatorPhas no zero eigenvalue when the normalized magnetic flux$$\alpha $$ satisfies$$|\alpha |<1$$ , but it does have a zero energy resonance. We prove that in this case a Lieb–Thirring inequality for the$$\gamma $$ -th moment of the eigenvalues of$$P+V$$ is valid under the optimal restrictions$$\gamma \ge |\alpha |$$ and$$\gamma >0$$ . Besides the usual semiclassical integral, the right side of our inequality involves an integral where the zero energy resonance state appears explicitly. Our inequality improves earlier works that were restricted to moments of order$$\gamma \ge 1$$ .
more »
« less
This content will become publicly available on April 1, 2026
Optimizers For The Finite-Rank Lieb-Thirring Inequality
abstract: The finite-rank Lieb-Thirring inequality provides an estimate on a Riesz sum of the $$N$$ lowest eigenvalues of a Schr\odinger operator $$-\Delta-V(x)$ in terms of an $$L^p(\mathbb{R}^d)$$ norm of the potential $$V$$. We prove here the existence of an optimizing potential for each $$N$$, discuss its qualitative properties and the Euler--Lagrange equation (which is a system of coupled nonlinear Schr\odinger equations) and study in detail the behavior of optimizing sequences. In particular, under the condition $$\gamma>\max\{0,2-d/2\}$ on the Riesz exponent in the inequality, we prove the compactness of all the optimizing sequences up to translations. We also show that the optimal Lieb-Thirring constant cannot be stationary in $$N$$, which sheds a new light on a conjecture of Lieb-Thirring. In dimension $d=1$ at $$\gamma=3/2$$, we show that the optimizers with $$N$$ negative eigenvalues are exactly the Korteweg-de Vries $$N$$-solitons and that optimizing sequences must approach the corresponding manifold. Our work also covers the critical case $$\gamma=0$$ in dimension $$d\geq3$$ (Cwikel-Lieb-Rozenblum inequality) for which we exhibit and use a link with invariants of the Yamabe problem.
more »
« less
- Award ID(s):
- 1954995
- PAR ID:
- 10628071
- Publisher / Repository:
- Hopkins Press
- Date Published:
- Journal Name:
- American Journal of Mathematics
- Volume:
- 147
- Issue:
- 2
- ISSN:
- 1080-6377
- Page Range / eLocation ID:
- 503 to 560
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The main result of this paper is a complete proof of a new Lieb–Thirring-type inequality for Jacobi matrices originally conjectured by Hundertmark and Simon. In particular, it is proved that the estimate on the sum of eigenvalues does not depend on the off-diagonal terms as long as they are smaller than their asymptotic value. An interesting feature of the proof is that it employs a technique originally used by Hundertmark–Laptev–Weidl concerning sums of singular values for compact operators. This technique seems to be novel in the context of Jacobi matrices.more » « less
-
Trace inequalities are general techniques with many applications in quantum information theory, often replacing the classical functional calculus in noncommutative settings. The physics of quantum field theory and holography, however, motivates entropy inequalities in type III von Neumann algebras that lack a semifinite trace. The Haagerup and Kosaki Lp spaces enable re-expressing trace inequalities in non-tracial von Neumann algebras. In particular, we show this for the generalized Araki–Lieb–Thirring and Golden–Thompson inequalities from the work of Sutter et al. [Commun. Math. Phys. 352(1), 37 (2017)]. Then, using the Haagerup approximation method, we prove a general von Neumann algebra version of universal recovery map corrections to the data processing inequality for relative entropy. We also show subharmonicity of a logarithmic p-fidelity of recovery. Furthermore, we prove that the non-decrease of relative entropy is equivalent to the existence of an L1-isometry implementing the channel on both input states.more » « less
-
We consider one-dimensional quasi-periodic Schr\"odinger operators with analytic potentials. In the positive Lyapunov exponent regime, we prove large deviation estimates which lead to refined H\"older continuity of the Lyapunov exponents and the integrated density of states, in both small Lyapunov exponent and large coupling regimes. Our results cover all the Diophantine frequencies and some Liouville frequencies.more » « less
-
Abstract In this paper, we consider discrete Schrödinger operators of the form, $$\begin{equation*} (Hu)(n) = u({n+1})+u({n-1})+V(n)u(n). \end{equation*}$$We view $$H$$ as a perturbation of the free operator $$H_0$$, where $$(H_0u)(n)= u({n+1})+u({n-1})$$. For $$H_0$$ (no perturbation), $$\sigma _{\textrm{ess}}(H_0)=\sigma _{\textrm{ac}}(H)=[-2,2]$$ and $$H_0$$ does not have eigenvalues embedded into $(-2,2)$. It is an interesting and important problem to identify the perturbation such that the operator $$H_0+V$$ has one eigenvalue (finitely many eigenvalues or countable eigenvalues) embedded into $(-2,2)$. We introduce the almost sign type potentials and develop the Prüfer transformation to address this problem, which leads to the following five results. 1: We obtain the sharp spectral transition for the existence of irrational type eigenvalues or rational type eigenvalues with even denominators.2: Suppose $$\limsup _{n\to \infty } n|V(n)|=a<\infty .$$ We obtain a lower/upper bound of $$a$$ such that $$H_0+V$$ has one rational type eigenvalue with odd denominator.3: We obtain the asymptotical behavior of embedded eigenvalues around the boundaries of $(-2,2)$.4: Given any finite set of points $$\{ E_j\}_{j=1}^N$$ in $(-2,2)$ with $$0\notin \{ E_j\}_{j=1}^N+\{ E_j\}_{j=1}^N$$, we construct the explicit potential $$V(n)=\frac{O(1)}{1+|n|}$$ such that $$H=H_0+V$$ has eigenvalues $$\{ E_j\}_{j=1}^N$$.5: Given any countable set of points $$\{ E_j\}$$ in $(-2,2)$ with $$0\notin \{ E_j\}+\{ E_j\}$$, and any function $h(n)>0$ going to infinity arbitrarily slowly, we construct the explicit potential $$|V(n)|\leq \frac{h(n)}{1+|n|}$$ such that $$H=H_0+V$$ has eigenvalues $$\{ E_j\}$$.more » « less
An official website of the United States government
