skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Riesz means asymptotics for Dirichlet and Neumann Laplacians on Lipschitz domains
Abstract We consider the eigenvalues of the Dirichlet and Neumann Laplacians on a bounded domain with Lipschitz boundary and prove two-term asymptotics for their Riesz means of arbitrary positive order. Moreover, when the underlying domain is convex, we obtain universal, non-asymptotic bounds that correctly reproduce the two leading terms in the asymptotics and depend on the domain only through simple geometric characteristics. Important ingredients in our proof are non-asymptotic versions of various Tauberian theorems.  more » « less
Award ID(s):
1954995
PAR ID:
10628073
Author(s) / Creator(s):
;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Inventiones mathematicae
Volume:
241
Issue:
3
ISSN:
0020-9910
Page Range / eLocation ID:
999 to 1079
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We obtain Weyl type asymptotics for the quantised derivative \dj \mkern 1muf of a function f f from the homgeneous Sobolev space W ˙ d 1 ( R d ) \dot {W}^1_d(\mathbb {R}^d) on R d . \mathbb {R}^d. The asymptotic coefficient ‖ ∇ f ‖ L d ( R d ) \|\nabla f\|_{L_d(\mathbb R^d)} is equivalent to the norm of \dj \mkern 1muf in the principal ideal L d , ∞ , \mathcal {L}_{d,\infty }, thus, providing a non-asymptotic, uniform bound on the spectrum of \dj \mkern 1muf. Our methods are based on the C ∗ C^{\ast } -algebraic notion of the principal symbol mapping on R d \mathbb {R}^d , as developed recently by the last two authors and collaborators. 
    more » « less
  2. Abstract The Bradley–Terry–Luce (BTL) model is a benchmark model for pairwise comparisons between individuals. Despite recent progress on the first-order asymptotics of several popular procedures, the understanding of uncertainty quantification in the BTL model remains largely incomplete, especially when the underlying comparison graph is sparse. In this paper, we fill this gap by focusing on two estimators that have received much recent attention: the maximum likelihood estimator (MLE) and the spectral estimator. Using a unified proof strategy, we derive sharp and uniform non-asymptotic expansions for both estimators in the sparsest possible regime (up to some poly-logarithmic factors) of the underlying comparison graph. These expansions allow us to obtain: (i) finite-dimensional central limit theorems for both estimators; (ii) construction of confidence intervals for individual ranks; (iii) optimal constant of $$\ell _2$$ estimation, which is achieved by the MLE but not by the spectral estimator. Our proof is based on a self-consistent equation of the second-order remainder vector and a novel leave-two-out analysis. 
    more » « less
  3. Abstract We obtain rigorous large time asymptotics for the Landau–Lifshitz (LL) equation in the soliton free case by extending the nonlinear steepest descent method to genus 1 surfaces. The methods presented in this paper pave the way to a rigorous analysis of other integrable equations on the torus and enable asymptotic analysis on different regimes of the LL equation. 
    more » « less
  4. Abstract The inverse scattering transform for the focusing nonlinear Schrödinger equation is presented for a general class of initial conditions whose asymptotic behavior at infinity consists of counterpropagating waves. The formulation takes into account the branched nature of the two asymptotic eigenvalues of the associated scattering problem. The Jost eigenfunctions and scattering coefficients are defined explicitly as single‐valued functions on the complex plane with jump discontinuities along certain branch cuts. The analyticity properties, symmetries, discrete spectrum, asymptotics, and behavior at the branch points are discussed explicitly. The inverse problem is formulated as a matrix Riemann‐Hilbert problem with poles. Reductions to all cases previously discussed in the literature are explicitly discussed. The scattering data associated to a few special cases consisting of physically relevant Riemann problems are explicitly computed. 
    more » « less
  5. A<sc>bstract</sc> We use the radial null energy condition to construct a monotonica-function for a certain type of non-relativistic holographic RG flows. We test oura-function in three different geometries that feature a Boomerang RG flow, characterized by a domain wall between two AdS spaces with the same AdS radius, but with different (and sometimes direction-dependent) speeds of light. We find that thea-function monotonically decreases and goes to a constant in the asymptotic regimes of the geometry. Using the holographic dictionary in this asymptotic AdS spaces, we find that thea-function not only reads the fixed point central charge but also the speed of light, suggesting what the correct RG charge might be for non-relativistic RG flows. 
    more » « less