Abstract Integrated electro-optic (EO) modulators are fundamental photonics components with utility in domains ranging from digital communications to quantum information processing. At telecommunication wavelengths, thin-film lithium niobate modulators exhibit state-of-the-art performance in voltage-length product ( V π L ), optical loss, and EO bandwidth. However, applications in optical imaging, optogenetics, and quantum science generally require devices operating in the visible-to-near-infrared (VNIR) wavelength range. Here, we realize VNIR amplitude and phase modulators featuring V π L ’s of sub-1 V ⋅ cm, low optical loss, and high bandwidth EO response. Our Mach-Zehnder modulators exhibit a V π L as low as 0.55 V ⋅ cm at 738 nm, on-chip optical loss of ~0.7 dB/cm, and EO bandwidths in excess of 35 GHz. Furthermore, we highlight the opportunities these high-performance modulators offer by demonstrating integrated EO frequency combs operating at VNIR wavelengths, with over 50 lines and tunable spacing, and frequency shifting of pulsed light beyond its intrinsic bandwidth (up to 7x Fourier limit) by an EO shearing method.
more »
« less
DC-stable electro-optic modulators using thin-film lithium tantalate
We demonstrate telecommunication-wavelength Pockels electro-optic modulators in thin-film lithium tantalate (TFLT) with superior DC stability compared to equivalent thin-film lithium niobate (TFLN) modulators. Less than 1 dB output power fluctuation for quadrature-biased TFLT is measured compared to 5 dB with TFLN over 46 hours with 12.1 dBm input power. Our TFLT modulators maintain properties similar to those in TFLN: 3.4 Vcm half-wave voltage length product, 39 dB extinction ratio, flat RF electro-optic response from 3-50 GHz, and 0.35 dB on-chip loss. We also show low error-rate data modulation over 0-70°C with TFLT modulators and optical loss of 9 dB/m.
more »
« less
- Award ID(s):
- 2138068
- PAR ID:
- 10628121
- Publisher / Repository:
- Optica
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 32
- Issue:
- 25
- ISSN:
- 1094-4087
- Page Range / eLocation ID:
- 44115
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Dissipative Kerr solitons from optical microresonators, commonly referred to as soliton microcombs, have been developed for a broad range of applications, including precision measurement, optical frequency synthesis, and ultra-stable microwave and millimeter wave generation, all on a chip. An important goal for microcombs is self-referencing, which requires octave-spanning bandwidths to detect and stabilize the comb carrier envelope offset frequency. Further, detection and locking of the comb spacings are often achieved using frequency division by electro-optic modulation. The thin-film lithium niobate photonic platform, with its low loss, strong second- and third-order nonlinearities, as well as large Pockels effect, is ideally suited for these tasks. However, octave-spanning soliton microcombs are challenging to demonstrate on this platform, largely complicated by strong Raman effects hindering reliable fabrication of soliton devices. Here, we demonstrate entirely connected and octave-spanning soliton microcombs on thin-film lithium niobate. With appropriate control over microresonator free spectral range and dissipation spectrum, we show that soliton-inhibiting Raman effects are suppressed, and soliton devices are fabricated with near-unity yield. Our work offers an unambiguous method for soliton generation on strongly Raman-active materials. Further, it anticipates monolithically integrated, self-referenced frequency standards in conjunction with established technologies, such as periodically poled waveguides and electro-optic modulators, on thin-film lithium niobate.more » « less
-
The recent emergence of thin-film lithium niobate (TFLN) has extended the landscape of integrated photonics. This has been enabled by the commercialization of TFLN wafers and advanced nanofabrication of TFLN such as high-quality dry etching. However, fabrication imperfections still limit the propagation loss to a few dB/m, restricting the impact of this platform. Here, we demonstrate TFLN microresonators with a record-high intrinsic quality (Q) factor of twenty-nine million, corresponding to an ultra-low propagation loss of 1.3 dB/m. We present spectral analysis and the statistical distribution ofQfactors across different resonator geometries. Our work pushes the fabrication limits of TFLN photonics to achieve aQfactor within 1 order of magnitude of the material limit.more » « less
-
Abstract Optical microcomb underpins a wide range of applications from communication, metrology, to sensing. Although extensively explored in recent years, challenges remain in key aspects of microcomb such as complex soliton initialization, low power efficiency, and limited comb reconfigurability. Here we present an on-chip microcomb laser to address these key challenges. Realized with integration between III and V gain chip and a thin-film lithium niobate (TFLN) photonic integrated circuit (PIC), the laser directly emits mode-locked microcomb on demand with robust turnkey operation inherently built in, with individual comb linewidth down to 600 Hz, whole-comb frequency tuning rate exceeding 2.4 × 1017 Hz/s, and 100% utilization of optical power fully contributing to comb generation. The demonstrated approach unifies architecture and operation simplicity, electro-optic reconfigurability, high-speed tunability, and multifunctional capability enabled by TFLN PIC, opening up a great avenue towards on-demand generation of mode-locked microcomb that is of great potential for broad applications.more » « less
-
Abstract Manipulating the frequency and bandwidth of nonclassical light is essential for implementing frequency-encoded/multiplexed quantum computation, communication, and networking protocols, and for bridging spectral mismatch among various quantum systems. However, quantum spectral control requires a strong nonlinearity mediated by light, microwave, or acoustics, which is challenging to realize with high efficiency, low noise, and on an integrated chip. Here, we demonstrate both frequency shifting and bandwidth compression of heralded single-photon pulses using an integrated thin-film lithium niobate (TFLN) phase modulator. We achieve record-high electro-optic frequency shearing of telecom single photons over terahertz range (±641 GHz or ±5.2 nm), enabling high visibility quantum interference between frequency-nondegenerate photon pairs. We further operate the modulator as a time lens and demonstrate over eighteen-fold (6.55 nm to 0.35 nm) bandwidth compression of single photons. Our results showcase the viability and promise of on-chip quantum spectral control for scalable photonic quantum information processing.more » « less
An official website of the United States government

