Silicon carbide (SiC) has great potential for optomechanical applications due to its outstanding optical and mechanical properties. However, challenges associated with SiC nanofabrication have constrained its adoption in optomechanical devices, as embodied by the considerable optical loss or lack of integrated optical access in existing mechanical resonators. In this work, we overcome such challenges and demonstrate a low-loss, ultracompact optomechanical resonator in an integrated 4H-SiC-on-insulator (4H-SiCOI) photonic platform for the first time, to our knowledge. Based on a suspended 4.3-μm-radius microdisk, the SiC optomechanical resonator features low optical loss (<1 dB/cm), a high mechanical frequencyfmof 0.95×109 Hz, a mechanical quality factorQmof 1.92×104, and a footprint of <1×10−5 mm2. The correspondingfm·Qmproduct is estimated to be 1.82×1013 Hz, which is among the highest reported values of optomechanical cavities tested in ambient environment at room temperature. In addition, the strong optomechanical coupling in the SiC microdisk enables coherent regenerative optomechanical oscillations at a threshold optical dropped power of 14 μW, which also supports efficient harmonic generation at increased power levels. With such competitive performance, we envision a range of chip-scale optomechanical applications to be enabled by the low-loss 4H-SiCOI platform.
more »
« less
Twenty-nine million intrinsic Q -factor monolithic microresonators on thin-film lithium niobate
The recent emergence of thin-film lithium niobate (TFLN) has extended the landscape of integrated photonics. This has been enabled by the commercialization of TFLN wafers and advanced nanofabrication of TFLN such as high-quality dry etching. However, fabrication imperfections still limit the propagation loss to a few dB/m, restricting the impact of this platform. Here, we demonstrate TFLN microresonators with a record-high intrinsic quality (Q) factor of twenty-nine million, corresponding to an ultra-low propagation loss of 1.3 dB/m. We present spectral analysis and the statistical distribution ofQfactors across different resonator geometries. Our work pushes the fabrication limits of TFLN photonics to achieve aQfactor within 1 order of magnitude of the material limit.
more »
« less
- Award ID(s):
- 2137723
- PAR ID:
- 10563695
- Publisher / Repository:
- Optica
- Date Published:
- Journal Name:
- Photonics Research
- Volume:
- 12
- Issue:
- 8
- ISSN:
- 2327-9125
- Page Range / eLocation ID:
- A63
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ultraviolet and visible integrated photonics enable applications in quantum information, sensing, and spectroscopy, among others. Few materials support low-loss photonics into the UV, and the relatively low refractive index of known depositable materials limits the achievable functionality. Here, we present a high-index integrated photonics platform based on HfO2and Al2O3composites deposited via atomic layer deposition (ALD) with low loss in the visible and near UV. We show that Al2O3incorporation dramatically decreases bulk loss compared to pure HfO2, consistent with inhibited crystallization due to the admixture of Al2O3. Composites exhibit refractive indexnfollowing the average of that of HfO2and Al2O3, weighted by the HfO2fractional compositionx. Atλ = 375 nm, composites withx = 0.67 exhibitn = 2.01, preserving most of HfO2’s significantly higher index, and 3.8(7) dB/cm material loss. We further present fully etched and cladded waveguides, grating couplers, and ring resonators, realizing a single-mode waveguide loss of 0.25(2) dB/cm inferred from resonators of 2.6 million intrinsic quality factor atλ = 729 nm, 2.6(2) dB/cm atλ = 405 nm, and 7.7(6) dB/cm atλ = 375 nm. We measure the composite’s thermo-optic coefficient (TOC) to be 2.44(3) × 10−5RIU/°C nearλ = 397 nm. This work establishes (HfO2)x(Al2O3)1−xcomposites as a platform amenable to integration for low-loss, high-index photonics spanning the UV to NIR.more » « less
-
We demonstrate telecommunication-wavelength Pockels electro-optic modulators in thin-film lithium tantalate (TFLT) with superior DC stability compared to equivalent thin-film lithium niobate (TFLN) modulators. Less than 1 dB output power fluctuation for quadrature-biased TFLT is measured compared to 5 dB with TFLN over 46 hours with 12.1 dBm input power. Our TFLT modulators maintain properties similar to those in TFLN: 3.4 Vcm half-wave voltage length product, 39 dB extinction ratio, flat RF electro-optic response from 3-50 GHz, and 0.35 dB on-chip loss. We also show low error-rate data modulation over 0-70°C with TFLT modulators and optical loss of 9 dB/m.more » « less
-
Abstract Heterogeneously integrated hybrid photonic crystal cavities enable strong light–matter interactions with solid state, optically addressable quantum memories. A key challenge to realizing high quality factor (Q) hybrid photonic crystals is the reduced index contrast on the substrate compared to suspended devices in air. This challenge is particularly acute for color centers in diamond because of diamond’s high refractive index, which leads to increased scattering loss into the substrate. Here, we develop a design methodology for hybrid photonic crystals utilizing a detailed understanding of substrate-mediated loss, which incorporates sensitivity to fabrication errors as a critical parameter. Using this methodology, we design robust, high-Q, GaAs-on-diamond photonic crystal cavities, and by optimizing our fabrication procedure, we experimentally realize cavities withQapproaching 30,000 at a resonance wavelength of 955 nm.more » « less
-
Abstract Silicon carbide (SiC)'s nonlinear optical properties and applications to quantum information have recently brought attention to its potential as an integrated photonics platform. However, despite its many excellent material properties, such as large thermal conductivity, wide transparency window, and strong optical nonlinearities, it is generally a difficult material for microfabrication. Here, it is shown that directly bonded silicon‐on‐silicon carbide can be a high‐performing hybrid photonics platform that does not require the need to form SiC membranes or directly pattern in SiC. The optimized bonding method yields defect‐free, uniform films with minimal oxide at the silicon–silicon–carbide interface. Ring resonators are patterned into the silicon layer with standard, complimentary metal–oxide–semiconductor (CMOS) compatible (Si) fabrication and measure room‐temperature, near‐infrared quality factors exceeding 105. The corresponding propagation loss is 5.7 dB cm−1. The process offers a wafer‐scalable pathway to the integration of SiC photonics into CMOS devices.more » « less
An official website of the United States government

