skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using AI-Based Virtual Companions to Assist Adolescents with Autism in Recognizing and Addressing Cyberbullying
Social media platforms and online gaming sites play a pervasive role in facilitating peer interaction and social development for adolescents, but they also pose potential threats to health and safety. It is crucial to tackle cyberbullying issues within these platforms to ensure the healthy social development of adolescents. Cyberbullying has been linked to adverse mental health outcomes among adolescents, including anxiety, depression, academic underperformance, and an increased risk of suicide. While cyberbullying is a concern for all adolescents, those with disabilities are particularly susceptible and face a higher risk of being targets of cyberbullying. Our research addresses these challenges by introducing a personalized online virtual companion guided by artificial intelligence (AI). The web-based virtual companion’s interactions aim to assist adolescents in detecting cyberbullying. More specifically, an adolescent with ASD watches a cyberbullying scenario in a virtual environment, and the AI virtual companion then asks the adolescent if he/she detected cyberbullying. To inform the virtual companion in real time to know if the adolescent has learned about detecting cyberbullying, we have implemented fast and lightweight cyberbullying detection models employing the T5-small and MobileBERT networks. Our experimental results show that we obtain comparable results to the state-of-the-art methods despite having a compact architecture.  more » « less
Award ID(s):
2114808
PAR ID:
10628195
Author(s) / Creator(s):
; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Sensors
Volume:
24
Issue:
12
ISSN:
1424-8220
Page Range / eLocation ID:
3875
Subject(s) / Keyword(s):
cyberbullying natural language processing language models machine learning Autism Spectrum Disorder (ASD)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Social media continues to have an impact on the trajectory of humanity. However, its introduction has also weaponized keyboards, allowing the abusive language normally reserved for in-person bullying to jump onto the screen, i.e., cyberbullying. Cyberbullying poses a significant threat to adolescents globally, affecting the mental health and well-being of many. A group that is particularly at risk is the LGBTQ+ community, as researchers have uncovered a strong correlation between identifying as LGBTQ+ and suffering from greater online harassment. Therefore, it is critical to develop machine learning models that can accurately discern cyberbullying incidents as they happen to LGBTQ+ members. The aim of this study is to compare the efficacy of several transformer models in identifying cyberbullying targeting LGBTQ+ individuals. We seek to determine the relative merits and demerits of these existing methods in addressing complex and subtle kinds of cyberbullying by assessing their effectiveness with real social media data. 
    more » « less
  2. Social service providers play a vital role in the developmental outcomes of underprivileged youth as they transition into adulthood. Educators, mental health professionals, juvenile justice officers, and child welfare caseworkers often have first-hand knowledge of the trials uniquely faced by these vulnerable youth and are charged with mitigating harmful risks, such as mental health challenges, child abuse, drug use, and sex trafficking. Yet, less is known about whether or how social service providers assess and mitigate the online risk experiences of youth under their care. Therefore, as part of the National Science Foundation (NSF) I-Corps program, we conducted interviews with 37 social service providers (SSPs) who work with underprivileged youth to determine what (if any) online risks are most concerning to them given their role in youth protection, how they assess or become aware of these online risk experiences, and whether they see value in the possibility of using artificial intelligence (AI) as a potential solution for online risk detection. Overall, online sexual risks (e.g., sexual grooming and abuse) and cyberbullying were the most salient concern across all social service domains, especially when these experiences crossed the boundary between the digital and the physical worlds. Yet, SSPs had to rely heavily on youth self-reports to know whether and when online risks occurred, which required building a trusting relationship with youth; otherwise, SSPs became aware only after a formal investigation had been launched. Therefore, most SSPs found value in the potential for using AI as an early detection system and to monitor youth, but they were concerned that such a solution would not be feasible due to a lack of resources to adequately respond to online incidences, access to the necessary digital trace data (e.g., social media), context, and concerns about violating the trust relationships they built with youth. Thus, such automated risk detection systems should be designed and deployed with caution, as their implementation could cause youth to mistrust adults, thereby limiting the receipt of necessary guidance and support. We add to the bodies of research on adolescent online safety and the benefits and challenges of leveraging algorithmic systems in the public sector. 
    more » « less
  3. Instagram, one of the most popular social media platforms among youth, has recently come under scrutiny for potentially being harmful to the safety and well-being of our younger generations. Automated approaches for risk detection may be one way to help mitigate some of these risks if such algorithms are both accurate and contextual to the types of online harms youth face on social media platforms. However, the imminent switch by Instagram to end-to-end encryption for private conversations will limit the type of data that will be available to the platform to detect and mitigate such risks. In this paper, we investigate which indicators are most helpful in automatically detecting risk in Instagram private conversations, with an eye on high-level metadata, which will still be available in the scenario of end-to-end encryption. Toward this end, we collected Instagram data from 172 youth (ages 13-21) and asked them to identify private message conversations that made them feel uncomfortable or unsafe. Our participants risk-flagged 28,725 conversations that contained 4,181,970 direct messages, including textual posts and images. Based on this rich and multimodal dataset, we tested multiple feature sets (metadata, linguistic cues, and image features) and trained classifiers to detect risky conversations. Overall, we found that the metadata features (e.g., conversation length, a proxy for participant engagement) were the best predictors of risky conversations. However, for distinguishing between risk types, the different linguistic and media cues were the best predictors. Based on our findings, we provide design implications for AI risk detection systems in the presence of end-to-end encryption. More broadly, our work contributes to the literature on adolescent online safety by moving toward more robust solutions for risk detection that directly takes into account the lived risk experiences of youth. 
    more » « less
  4. null (Ed.)
    Global health studies typically characterise adolescent marriage as a fundamental risk to female wellbeing. In contrast, ethnographic research among communities ‘at risk’ identifies that early marriage is often viewed as an opportunity weighed against locally feasible alternatives. Addressing this contradiction, we document perceived risks and opportunities of marriage, positioning them among wider concerns facing female adolescents in north-western Tanzania. On the basis of these data, we then provide recommendations for global efforts to end the marriage of minors. Thirteen focus groups and 26 in-depth interviews were conducted in 2019 with female adolescents, young women and men, and parents of female adolescents from a semi-urban community where adolescent marriage is normative. Data were compiled to synthesise narratives of adolescent risk and opportunity. Marriage was viewed as an opportunity for adolescent girls, bringing benefits such as increased social status. Risks sometimes outweighed benefits of marriage, but marriage remained desirable when structural constraints, like poverty, limited feasible alternatives and when adolescents faced similar risks, like pregnancy, outside of marriage. We conclude that remaining unmarried does not shield adolescents from adversity, and campaigns targeting adolescent marriage via criminalisation, without diminishing other risks of adolescence, may further limit rather than expand options for adolescent girls. 
    more » « less
  5. Sexual exploration is a natural part of adolescent development; yet, unmediated internet access has enabled teens to engage in a wider variety of potentially riskier sexual interactions than previous generations, from normatively appropriate sexual interactions to sexually abusive situations. Teens have turned to online peer support platforms to disclose and seek support about these experiences. Therefore, we analyzed posts (N=45,955) made by adolescents (ages 13--17) on an online peer support platform to deeply examine their online sexual risk experiences. By applying a mixed methods approach, we 1) accurately (average of AUC = 0.90) identified posts that contained teen disclosures about online sexual risk experiences and classified the posts based on level of consent (i.e., consensual, non-consensual, sexual abuse) and relationship type (i.e., stranger, dating/friend, family) between the teen and the person in which they shared the sexual experience, 2) detected statistically significant differences in the proportions of posts based on these dimensions, and 3) further unpacked the nuance in how these online sexual risk experiences were typically characterized in the posts. Teens were significantly more likely to engage in consensual sexting with friends/dating partners; unwanted solicitations were more likely from strangers and sexual abuse was more likely when a family member was involved. We contribute to the HCI and CSCW literature around youth online sexual risk experiences by moving beyond the false dichotomy of "safe" versus "risky". Our work provides a deeper understanding of technology-mediated adolescent sexual behaviors from the perspectives of sexual well-being, risk detection, and the prevention of online sexual violence toward youth. 
    more » « less