skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tensionless AdS3/CFT2 and single trace $$ T\overline{T} $$
One of the few cases of AdS/CFT where both sides of the duality are under good control relates tensionlessk= 1 strings on AdS3to a two-dimensional symmetric product CFT. Building on prior observations, we propose an exact duality between string theory on a spacetime which is not asymptotically AdS and a non-conformal field theory. The bulk theory is constructed as a marginal deformation of thek= 1 AdS3string while the spacetime dual is a single trace$$ T\overline{T} $$ T T ¯ -deformed symmetric orbifold theory. As evidence for the duality, we match the one-loop bulk and boundary torus partition functions. This correspondence provides a framework to both learn about quantum gravity beyond AdS and understand how to define physical observables in$$ T\overline{T} $$ T T ¯ -deformed field theories.  more » « less
Award ID(s):
2412985 1720480
PAR ID:
10628303
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Journal of High Energy Physics
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2024
Issue:
11
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> Recent research has leveraged the tractability of$$ T\overline{T} $$ T T ¯ style deformations to formulate timelike-bounded patches of three-dimensional bulk spacetimes includingdS3. This proceeds by breaking the problem into two parts: a solvable theory that captures the most entropic energy bands, and a tuning algorithm to treat additional effects and fine structure. We point out that the method extends readily to higher dimensions, and in particular does not require factorization of the fullT2operator (the higher dimensional analogue of$$ T\overline{T} $$ T T ¯ defined in [1]). Focusing ondS4, we first define a solvable theory at finiteNvia a restrictedT2deformation of theCFT3onS2×ℝ, in whichTis replaced by the form it would take in symmetric homogeneous states, containing only diagonal energy densityE/Vand pressure (-dE/dV) components. This explicitly defines a finite-N solvable sector ofdS4/deformed-CFT3, capturing the radial geometry and count of the entropically dominant energy band, reproducing the Gibbons-Hawking entropy as a state count. To accurately capture local bulk excitations ofdS4including gravitons, we build a deformation algorithm in direct analogy to the case ofdS3with bulk matter recently proposed in [2]. This starts with an infinitesimal stint of the solvable deformation as a regulator. The full microscopic theory is built by adding renormalized versions ofT2and other operators at each step, defined by matching to bulk local calculations when they apply, including an uplift fromAdS4/CFT3todS4(as is available in hyperbolic compactifications of M theory). The details of the bulk-local algorithm depend on the choice of boundary conditions; we summarize the status of these in GR and beyond, illustrating our method for the case of the cylindrical Dirichlet condition which can be UV completed by our finite quantum theory. 
    more » « less
  2. A<sc>bstract</sc> In this note, we resolve an apparent obstacle to string/M theory realizations of dS observer patch holography, finding a new role for averaging in quantum gravity. The solvable$$ T\overline{T} $$ T T ¯ (+Λ2) deformation recently provided a detailed microstate count of thedS3cosmic horizon, reproducing the refined Gibbons-Hawking entropy computed by Anninos et al. along with the correct radial bulk geometry. On the gravity side, the deformation brings in the boundary to just outside a black hole horizon, where it is indistinguishable from the dS cosmic horizon, enabling a continuous passage to a bounded patch of dS. In string/M theory, the relationship between AdS/CFT and dS involves uplifts that change the internal topology, e.g. replacing an internal sphere$$ \mathbbm{S} $$ S with an internal hyperbolic spaceℍ(and incorporating varying warp and conformal factors). We connect these two approaches, noting that the differences in the extra dimensions between AdS black hole and dS solutions are washed out by internal averaging in the presence of a timelike boundary skirting the horizon. This helps to motivate a detailed investigation into the possibility of such timelike boundaries in (A)dS solutions of string/M theory, and we take initial steps toward suitable generalizations of Liouville walls as one approach. 
    more » « less
  3. Abstract Despite the f0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ ) meson, a tetraquark ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ q q ¯ ) exotic state, a kaon-antikaon ($${{\rm{K}}}\overline{{{\rm{K}}}}$$ K K ¯ ) molecule, or a quark-antiquark-gluon ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ q q ¯ g ) hybrid. This paper reports strong evidence that the f0(980) state is an ordinary$${{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ meson, inferred from the scaling of elliptic anisotropies (v2) with the number of constituent quarks (nq), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0(980) state is reconstructed via its dominant decay channel f0(980) →π+π, in proton-lead collisions recorded by the CMS experiment at the LHC, and itsv2is measured as a function of transverse momentum (pT). It is found that thenq= 2 ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ state) hypothesis is favored overnq= 4 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ q q ¯ or$${{\rm{K}}}\overline{{{\rm{K}}}}$$ K K ¯ states) by 7.7, 6.3, or 3.1 standard deviations in thepT< 10, 8, or 6 GeV/cranges, respectively, and overnq= 3 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ q q ¯ g hybrid state) by 3.5 standard deviations in thepT< 8 GeV/crange. This result represents the first determination of the quark content of the f0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates. 
    more » « less
  4. A<sc>bstract</sc> An analysis of the production of a Higgs boson (H) in association with a top quark-antiquark pair ($$ \textrm{t}\overline{\textrm{t}}\textrm{H} $$ t t ¯ H ) or a single top quark (tH) is presented. The Higgs boson decay into a bottom quark-antiquark pair (H →$$ \textrm{b}\overline{\textrm{b}} $$ b b ¯ ) is targeted, and three different final states of the top quark decays are considered, defined by the number of leptons (electrons or muons) in the event. The analysis utilises proton-proton collision data collected at the CERN LHC with the CMS experiment at$$ \sqrt{s} $$ s = 13 TeV in 2016–2018, which correspond to an integrated luminosity of 138 fb−1. The observed$$ \textrm{t}\overline{\textrm{t}}\textrm{H} $$ t t ¯ H production rate relative to the standard model expectation is 0.33 ± 0.26 = 0.33 ± 0.17(stat) ± 0.21(syst). Additionally, the$$ \textrm{t}\overline{\textrm{t}}\textrm{H} $$ t t ¯ H production rate is determined in intervals of Higgs boson transverse momentum. An upper limit at 95% confidence level is set on the tH production rate of 14.6 times the standard model prediction, with an expectation of$$ {19.3}_{-6.0}^{+9.2} $$ 19.3 6.0 + 9.2 . Finally, constraints are derived on the strength and structure of the coupling between the Higgs boson and the top quark from simultaneous extraction of the$$ \textrm{t}\overline{\textrm{t}}\textrm{H} $$ t t ¯ H and tH production rates, and the results are combined with those obtained in other Higgs boson decay channels. 
    more » « less
  5. A<sc>bstract</sc> A measurement of the top quark pole mass$$ {m}_{\textrm{t}}^{\textrm{pole}} $$ m t pole in events where a top quark-antiquark pair ($$ \textrm{t}\overline{\textrm{t}} $$ t t ¯ ) is produced in association with at least one additional jet ($$ \textrm{t}\overline{\textrm{t}} $$ t t ¯ +jet) is presented. This analysis is performed using proton-proton collision data at$$ \sqrt{s} $$ s = 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to a total integrated luminosity of 36.3 fb−1. Events with two opposite-sign leptons in the final state (e+e+μ, e±μ) are analyzed. The reconstruction of the main observable and the event classification are optimized using multivariate analysis techniques based on machine learning. The production cross section is measured as a function of the inverse of the invariant mass of the$$ \textrm{t}\overline{\textrm{t}} $$ t t ¯ +jet system at the parton level using a maximum likelihood unfolding. Given a reference parton distribution function (PDF), the top quark pole mass is extracted using the theoretical predictions at next-to-leading order. For the ABMP16NLO PDF, this results in$$ {m}_{\textrm{t}}^{\textrm{pole}} $$ m t pole = 172.93±1.36 GeV. 
    more » « less