skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Existence of weak martingale solutions to a stochastic fluid-structure interaction problem with a compressible viscous fluid
Award ID(s):
2407197
PAR ID:
10628503
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Differential Equations
Volume:
449
Issue:
C
ISSN:
0022-0396
Page Range / eLocation ID:
113669
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Molecular chirality is a fundamental phenomenon, underlying both life as we know it and industrial pharmaceutical syntheses. Understanding the symmetry breaking phase transitions exhibited by many chiral molecular substances provides basic insights for topics ranging from the origin of life to the rational design of drug manufacturing processes. In this work, we have performed molecular dynamics simulations to investigate the fluid–fluid phase transitions of a flexible three-dimensional four-site chiral molecular model developed by Latinwo et al. [J. Chem. Phys. 145, 154503 (2016)] and Petsev et al. [J. Chem. Phys. 155, 084105 (2021)]. By introducing a bias favoring local homochiral vs heterochiral interactions, the system exhibits a phase transition from a single achiral phase to a single chiral phase that undergoes infrequent interconversion between the two thermodynamically identical chiral states: the L-rich and D-rich phases. According to the phase rule, this reactive binary system has two independent degrees of freedom and exhibits a density-dependent critical locus. Below the liquid–liquid critical locus, there exists a first-order vapor–liquid coexistence region with a single independent degree of freedom. Our results provide basic thermodynamic and kinetic insights for understanding many-body chiral symmetry breaking phenomena. 
    more » « less
  2. null (Ed.)
    Abstract. Deep (>1 km depth) scientific boreholes are unique assetsthat can be used to address a variety of microbiological, hydrologic, andbiogeochemical hypotheses. Few of these deep boreholes exist in oceaniccrust. One of them, Deep Sea Drilling Project Hole 504B, reaches∼190 ∘C at its base. We designed, fabricated, andlaboratory-tested the Multi-Temperature Fluid Sampler (MTFS), a non-gas-tight, titanium syringe-style fluid sampler for borehole applicationsthat is tolerant of such high temperatures. Each of the 12 MTFS unitscollects a single 1 L sample at a predetermined temperature, which isdefined by the trigger design and a shape memory alloy (SMA). SMAs have theinnate ability to be deformed and only return to their initial shapes whentheir activation temperatures are reached, thereby triggering a sampler at apredetermined temperature. Three SMA-based trigger mechanisms, which do notrely on electronics, were tested. Triggers were released at temperaturesspanning from 80 to 181 ∘C. The MTFS was set fordeployment on International Ocean Discovery Program Expedition 385T, buthole conditions precluded its use. The sampler is ready for use in deepoceanic or continental scientific boreholes with minimal training foroperational success. 
    more » « less
  3. null (Ed.)