skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 31, 2026

Title: Randomized Low-Rank Approximations beyond Gaussian Random Matrices
This paper expands the analysis of randomized low-rank approximation beyond the Gaussian distribution to four classes of random matrices: (1) independent sub-Gaussian entries, (2) independent sub-Gaussian columns, (3) independent bounded columns, and (4) independent columns with bounded second moment. Using a novel interpretation of the low-rank approximation error involving sample covariance matrices, we provide insight into the requirements of a good random matrix for randomized low-rank approximations. Although our bounds involve unspecified absolute constants (a consequence of underlying nonasymptotic theory of random matrices), they allow for qualitative comparisons across distributions. The analysis offers some details on the minimal number of samples (the number of columns of the random matrix ) and the error in the resulting low-rank approximation. We illustrate our analysis in the context of the randomized subspace iteration method as a representative algorithm for low-rank approximation; however, all the results are broadly applicable to other low-rank approximation techniques. We conclude our discussion with numerical examples using both synthetic and real-world test matrices.  more » « less
Award ID(s):
2324958 1845406
PAR ID:
10628521
Author(s) / Creator(s):
;
Publisher / Repository:
SIAM
Date Published:
Journal Name:
SIAM Journal on Mathematics of Data Science
Volume:
7
Issue:
1
ISSN:
2577-0187
Page Range / eLocation ID:
136 to 162
Subject(s) / Keyword(s):
randomized methods concentration inequalities low-rank approximations non-Gaussian distributions random matrices
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Building a sketch of an n-by-n empirical kernel matrix is a common approach to accelerate the computation of many kernel methods. In this paper, we propose a unified framework of constructing sketching methods in kernel ridge regression (KRR), which views the sketching matrix S as an accumulation of m rescaled sub-sampling matrices with independent columns. Our framework incorporates two commonly used sketching methods, sub-sampling sketches (known as the Nyström method) and sub-Gaussian sketches, as special cases with m=1 and m=infinity respectively. Under the new framework, we provide a unified error analysis of sketching approximation and show that our accumulation scheme improves the low accuracy of sub-sampling sketches when certain incoherence characteristic is high, and accelerates the more accurate but computationally heavier sub-Gaussian sketches. By optimally choosing the number m of accumulations, we show that a best trade-off between computational efficiency and statistical accuracy can be achieved. In practice, the sketching method can be as efficiently implemented as the sub-sampling sketches, as only minor extra matrix additions are needed. Our empirical evaluations also demonstrate that the proposed method may attain the accuracy close to sub-Gaussian sketches, while is as efficient as sub-sampling-based sketches. 
    more » « less
  2. Matrix low rank approximation is an effective method to reduce or eliminate the statistical redundancy of its components. Compared with the traditional global low rank methods such as singular value decomposition (SVD), local low rank approximation methods are more advantageous to uncover interpretable data structures when clear duality exists between the rows and columns of the matrix. Local low rank approximation is equivalent to low rank submatrix detection. Unfortunately,existing local low rank approximation methods can detect only submatrices of specific mean structure, which may miss a substantial amount of true and interesting patterns. In this work, we develop a novel matrix computational framework called RPSP (Random Probing based submatrix Propagation) that provides an effective solution for the general matrix local low rank representation problem. RPSP detects local low rank patterns that grow from small submatrices of low rank property, which are determined by a random projection approach. RPSP is supported by theories of random projection. Experiments on synthetic data demonstrate that RPSP outperforms all state-of-the-art methods, with the capacity to robustly and correctly identify the low rank matrices when the pattern has a similar mean as the background, background noise is heteroscedastic and multiple patterns present in the data. On real-world datasets, RPSP also demonstrates its effectiveness in identifying interpretable local low rank matrices. 
    more » « less
  3. Matrices are exceptionally useful in various fields of study as they provide a convenient framework to organize and manipulate data in a structured manner. However, modern matrices can involve billions of elements, making their storage and processing quite demanding in terms of computational resources and memory usage. Although prohibitively large, such matrices are often approximately low rank. We propose an algorithm that exploits this structure to obtain a low rank decomposition of any matrix A as A≈LR, where L and R are the low rank factors. The total number of elements in L and R can be significantly less than that in A. Furthermore, the entries of L and R are quantized to low precision formats −− compressing A by giving us a low rank and low precision factorization. Our algorithm first computes an approximate basis of the range space of A by randomly sketching its columns, followed by a quantization of the vectors constituting this basis. It then computes approximate projections of the columns of A onto this quantized basis. We derive upper bounds on the approximation error of our algorithm, and analyze the impact of target rank and quantization bit-budget. The tradeoff between compression ratio and approximation accuracy allows for flexibility in choosing these parameters based on specific application requirements. We empirically demonstrate the efficacy of our algorithm in image compression, nearest neighbor classification of image and text embeddings, and compressing the layers of LlaMa-7b. Our results illustrate that we can achieve compression ratios as aggressive as one bit per matrix coordinate, all while surpassing or maintaining the performance of traditional compression techniques. 
    more » « less
  4. We describe a randomized algorithm for producing a near-optimal hierarchical off-diagonal low-rank (HODLR) approximation to an n × n matrix A, accessible only though matrix-vector products with A and AT. We prove that, for the rank-k HODLR approximation problem, our method achieves a (1 + β )log(n )-optimal approximation in expected Frobenius norm using O (k log(n )/β3) matrix-vector products. In particular, the algorithm obtains a (1 + ∈ )-optimal approximation with O (k log4(n )/∈3) matrix-vector products, and for any constant c, an nc-optimal approximation with O (k log(n )) matrix-vector products. Apart from matrix-vector products, the additional computational cost of our method is just O (n poly(log(n ), k, β )). We complement the upper bound with a lower bound, which shows that any matrix-vector query algorithm requires at least Ω(k log(n ) + k/ε ) queries to obtain a (1 + ε )-optimal approximation. Our algorithm can be viewed as a robust version of widely used “peeling” methods for recovering HODLR matrices and is, to the best of our knowledge, the first matrix-vector query algorithm to enjoy theoretical worst- case guarantees for approximation by any hierarchical matrix class. To control the propagation of error between levels of hierarchical approximation, we introduce a new perturbation bound for low-rank approximation, which shows that the widely used Generalized Nyström method enjoys inherent stability when implemented with noisy matrix-vector products. We also introduce a novel randomly perforated matrix sketching method to further control the error in the peeling algorithm. 
    more » « less
  5. Given independent standard Gaussian points v1, . . . , vn in dimension d, for what values of (n, d) does there exist with high probability an origin-symmetric ellipsoid that simultaneously passes through all of the points? This basic problem of fitting an ellipsoid to random points has connections to low-rank matrix decompositions, independent component analysis, and principal component analysis. Based on strong numerical evidence, Saunderson, Parrilo, and Willsky (Saunderson, 2011; Saunderson et al., 2013) conjectured that the ellipsoid fitting problem transitions from feasible to infeasible as the number of points n increases, with a sharp threshold at n ∼ d^2/4. We resolve this conjecture up to logarithmic factors by constructing a fitting ellipsoid for some n = d^2/polylog(d). Our proof demonstrates feasibility of the least squares construction of (Saunderson, 2011; Saunderson et al., 2013) using a convenient decomposition of a certain non-standard random matrix and a careful analysis of its Neumann expansion via the theory of graph matrices. 
    more » « less