skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: A Unifying View of OTFS and Its Many Variants
High mobility environment leads to severe Doppler effects and poses serious challenges to the conventional physical layer based on the widely popular orthogonal frequency division multiplexing (OFDM). The recent emergence of orthogonal time frequency space (OTFS) modulation, along with its many related variants, presents a promising solution to overcome such channel Doppler effects. This paper aims to clearly establish the relationships among the various manifestations of OTFS. Among these related modulations, we identify their connections, common features, and distinctions. Building on existing works, this work provides a general overview of various OTFS-related detection schemes and performance comparisons. We first provide an overview of OFDM and filter bank multi-carrier (FBMC) by demonstrating OTFS as a precoded FBMC through the introduction of inverse symplectic finite Fourier transform (ISFFT). We explore the relationship between OTFS and related modulation schemes with similar characteristics. We provide an effective channel model for high-mobility channels and offer a unified detection representation. We provide numerical comparisons of power spectrum density (PSD) and bit error rate (BER) to underscore the benefit of these modulation schemes in high-mobility scenarios. We also evaluate various detection schemes, revealing insights into their efficacies. We discuss opportunities and challenges for OTFS in high mobility, setting the stage for future research and development in this field.  more » « less
Award ID(s):
2332760
PAR ID:
10628792
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE ieeexplore.ieee.org
Date Published:
Journal Name:
IEEE Communications Surveys & Tutorials
ISSN:
2373-745X
Page Range / eLocation ID:
1 to 1
Subject(s) / Keyword(s):
Modulation, OFDM, Symbols. Surveys, Tutorials, Fading channels, Doppler effect, Time-frequency analysis, Receivers, Filter banks
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a new turbo decision feedback equalizer and decoder (TDFED) for the orthogonal time-frequency space (OTFS) system of underwater mobile acoustic communications where the communication channel suffers from severe multipath and Doppler effects simultaneously. The proposed TDFED employs a set of feedforward and feedback filters in the time domain instead of the common approach that employs a normalized least mean square equalizer in the delay-Doppler domain. The receiver also utilizes low-complexity improved proportionate normalized least mean square channel estimation in the delay-Doppler domain. Practical OTFS modulation schemes are designed for acoustic transmission at a center frequency of 115 kHz and a symbol rate of 11.5 ksps (kilo-symbols-per-second). Several lake experiments in mobile communication scenarios are conducted to evaluate the proposed OTFS in comparison to the single-carrier coherent modulation (SCCM) and the orthogonal frequency division modulation (OFDM) schemes. The experimental results demonstrate that the proposed OTFS receiver effectively reduces the accuracy requirements of the Doppler compensation algorithm compared to the SCCM and OFDM schemes. The proposed TDFED algorithm achieves a much better bit error rate against long-multipath fading and severe Doppler shift than the existing delay-Doppler domain equalizers. 
    more » « less
  2. Orthogonal frequency division multiplexing (OFDM) is a candidate technique to provide high-speed data transmissions for optical communication systems. For intensity modulation and direct detection (IM/DD) optical communication systems, the peak transmitted power limitation of light sources and nonnegative transmitted signal constraints can result in nonlinear distortions from clipping. In this paper, we propose a clipping enhanced optical OFDM (CEO-OFDM) for IM/DD communication systems to reduce the clipping effects. CEO-OFDM transmits the information that results from clipping the peak power, which allows the use of a higher modulation index to improve the signal to noise ratio in exchange for a larger bandwidth. For the same transmitted data rate, CEO-OFDM can achieve a lower bit error rate than DC-biased optical OFDM (DCO-OFDM), asymmetrically clipped optical OFDM (ACO-OFDM) and unipolar OFDM (U-OFDM). By using a larger modulation constellation size, the proposed CEO-OFDM can support a higher throughput than other techniques when the same bit error rate is achieved. 
    more » « less
  3. Pilot-aided channel estimation allows the receiver to acquire channel state information (CSI) for each multicarrier block by multiplexing data and pilot symbols in the same block, as long as they can be decoupled. This work proposes several frequency-domain pilot multiplexing techniques to enable independent channel estimation and detection at the receiver for orthogonal chirp division multiplexing (OCDM) transmissions in frequency-selective channels. Analysis shows that each of the proposed schemes is able to achieve the mean squared error (MSE) lower bound for channel estimation and has greater spectral efficiency than the existing schemes for OCDM and chirp spread orthogonal frequency division multiplexing (OFDM). 
    more » « less
  4. Orthogonal frequency division multiplexing (OFDM) is a candidate technique to provide high-speed data transmissions for optical communication systems. For intensity modulation and direct detection (IM/DD) optical communication systems, only real and non-negative valued signals can be transmitted due to the natural properties of the transmitters and receivers. This paper proposes a technique called magnitude-phase optical OFDM (MPO-OFDM) that transmits the magnitude and phase of the conventional complex valued OFDM signal successively, similar to polar-based OFDM. Unlike polar-based OFDM, however, the proposed MPO-OFDM quantizes, encodes, and transmits the phase information using pulse amplitude modulation (PAM) to reduce the interference introduced by the additive noise on the phase. Considering the peak radiation power constraint of optical devices, the magnitude component of the MPO-OFDM signal experiences clipping distortion. In this paper, we optimally adjust the modulation index to control the scale of the magnitude component and achieve the highest signal to noise ratio (SNR). For the same transmitted data rate, the proposed MPO-OFDM can achieve a lower bit error rate than previously proposed techniques. For a similar BER performance, MPO-OFDM can support a higher throughput than the other techniques tested. 
    more » « less
  5. The wireless signal propagates via multipath arising from different reflections and penetration between a transmitter and receiver. Extracting multipath profiles (e.g., delay and Doppler along each path) from received signals enables many important applications, such as channel prediction and crossband channel estimation (i.e., estimating the channel on a different frequency). The benefit of multipath estimation further increases with mobility since the channel in that case is less stable and more important to track. Yet high-speed mobility poses significant challenges to multipath estimation. In this paper, instead of using time-frequency domain channel representation, we leverage the delay-Doppler domain representation to accurately extract and predict multipath properties. Specifically, we use impulses in the delay-Doppler domain as pilots to estimate the multipath parameters and apply the multipath information to predicting wireless channels as an example application. Our design rationale is that mobility is more predictable than the wireless channel since mobility has inertial while the wireless channel is the outcome of a complicated interaction between mobility, multipath, and noise. We evaluate our approach via both acoustic and RF experiments, including vehicular experiments using USRP. Our results show that the estimated multipath matches the ground truth, and the resulting channel prediction is more accurate than the traditional channel prediction schemes. 
    more » « less