skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Magnitude-Phase Optical OFDM for IM/DD Communication Systems
Orthogonal frequency division multiplexing (OFDM) is a candidate technique to provide high-speed data transmissions for optical communication systems. For intensity modulation and direct detection (IM/DD) optical communication systems, only real and non-negative valued signals can be transmitted due to the natural properties of the transmitters and receivers. This paper proposes a technique called magnitude-phase optical OFDM (MPO-OFDM) that transmits the magnitude and phase of the conventional complex valued OFDM signal successively, similar to polar-based OFDM. Unlike polar-based OFDM, however, the proposed MPO-OFDM quantizes, encodes, and transmits the phase information using pulse amplitude modulation (PAM) to reduce the interference introduced by the additive noise on the phase. Considering the peak radiation power constraint of optical devices, the magnitude component of the MPO-OFDM signal experiences clipping distortion. In this paper, we optimally adjust the modulation index to control the scale of the magnitude component and achieve the highest signal to noise ratio (SNR). For the same transmitted data rate, the proposed MPO-OFDM can achieve a lower bit error rate than previously proposed techniques. For a similar BER performance, MPO-OFDM can support a higher throughput than the other techniques tested.  more » « less
Award ID(s):
1521387
PAR ID:
10108376
Author(s) / Creator(s):
;
Date Published:
Journal Name:
52nd Asilomar Conference on Signals, Systems, and Computers
Page Range / eLocation ID:
702 to 706
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Orthogonal frequency division multiplexing (OFDM) is a candidate technique to provide high-speed data transmissions for optical communication systems. For intensity modulation and direct detection (IM/DD) optical communication systems, the peak transmitted power limitation of light sources and nonnegative transmitted signal constraints can result in nonlinear distortions from clipping. In this paper, we propose a clipping enhanced optical OFDM (CEO-OFDM) for IM/DD communication systems to reduce the clipping effects. CEO-OFDM transmits the information that results from clipping the peak power, which allows the use of a higher modulation index to improve the signal to noise ratio in exchange for a larger bandwidth. For the same transmitted data rate, CEO-OFDM can achieve a lower bit error rate than DC-biased optical OFDM (DCO-OFDM), asymmetrically clipped optical OFDM (ACO-OFDM) and unipolar OFDM (U-OFDM). By using a larger modulation constellation size, the proposed CEO-OFDM can support a higher throughput than other techniques when the same bit error rate is achieved. 
    more » « less
  2. null (Ed.)
    Recently, research on sixth-generation (6G) networks has gained significant interest. 6G is expected to enable a wide-range of applications that fifth-generation (5G) networks will not be able to serve reliably, such as tactile Internet. Additionally, 6G is expected to offer Terabits per second (Tbps) data rates, 10 times lower latency, and near 100% coverage, compared to 5G. Thus, 6G is expected to expand across all available spectrums including terahertz (THz) and optical frequency bands. In this manuscript, mixed-carrier communication (MCC) is investigated as a novel physical layer (PHY) design for 6G networks. The proposed MCC version in this study is based on visible light communication (VLC). MCC enables a unified transmission PHY design to connect devices with different complexities, simultaneously. The design trade-offs and the required signal-to-noise ratio (SNR) per individual modulation schemes embedded within MCC are investigated. The complexity analysis shows that a conventional optical OFDM receiver can capture the high-speed bit-stream embedded within MCC. For a forward error correction (FEC) bit-error-rate (BER) threshold of 3.8×10−3, MCC is optimized to maximize the spectral efficiency by embedding 2-beacon phase-shift keying (2-BnPSK) within an MCC envelope on top of 12 bits per beacon position modulation (BPM) symbol. 
    more » « less
  3. Integrated sensing and communication (ISAC) is emerging as a key technique for next-generation wireless systems. In order to expedite the practical implementation of ISAC in pervasive mobile networks, it is crucial to have widely deployed base stations with radar sensing capabilities. Thus, the utilization of standardized multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) hardware architectures and waveforms is pivotal for realizing seamless integration of effective communication and sensing functionalities. In this paper, we introduce a novel joint anglerange- velocity estimation algorithm for MIMO-OFDM ISAC systems. This approach exclusively depends on the format of conventional MIMO-OFDM waveforms that are widely adopted in wireless communications. Specifically, the angle-range-velocity information of potential targets is jointly extracted by utilizing all the received echo signals within a coherent processing interval (CPI). The proposed joint estimation algorithm can achieve larger signal-to-noise-ratio (SNR) processing gains and higher resolution by fully exploiting the echo signals and jointly estimating the angle-range-velocity information. A theoretical analysis for maximum unambiguous range, resolution, and SNR processing gains is provided to verify the advantages of the proposed joint estimation algorithm. Finally, the results of extensive numerical experiments are presented to demonstrate that the proposed joint estimation approach can achieve significantly lower rootmean- square-error (RMSE) performance for angle/range/velocity estimation for both single- and multi-target scenarios. 
    more » « less
  4. The 6G network, the next‐generation communication system, is envisaged to provide unprecedented experience through hyperconnectivity involving everything. The communication should hold artificial intelligence‐centric network infrastructures as interconnecting a swarm of machines. However, existing network systems use orthogonal modulation and costly error correction code; they are very sensitive to noise and rely on many processing layers. These schemes impose significant overhead on low‐power internet of things devices connected to noisy networks. Herein, a hyperdimensional network‐based system, called , is proposed, which enables robust and efficient data communication/learning. exploits a redundant and holographic representation of hyperdimensional computing (HDC) to design highly robust data modulation, enabling two functionalities on transmitted data: 1) an iterative decoding method that translates the vector back to the original data without error correction mechanisms, or 2) a native hyperdimensional learning technique on transmitted data with no need for costly data decoding. A hardware accelerator that supports both data decoding and hyperdimensional learning using a unified accelerator is also developed. The evaluation shows that provides a bit error rate comparable to that of state‐of‐the‐art modulation schemes while achieving 9.4 faster and 27.8 higher energy efficiency compared to state‐of‐the‐art deep learning systems. 
    more » « less
  5. Abstract The achievable rate of information transfer in optical communications is determined by the physical properties of the communication channel, such as the intrinsic channel noise. Bosonic phase noise channels, a class of non-Gaussian channels, have emerged as a relevant noise model in quantum information and optical communication. However, while the fundamental limits for communication over Gaussian channels have been extensively studied, the properties of communication over Bosonic phase noise channels are not well understood. Here we propose and demonstrate experimentally the concept of optimized communication strategies for communication over phase noise channels to enhance information transfer beyond what is possible with conventional methods of modulation and detection. Two key ingredients are generalized constellations of coherent states that interpolate between standard on-off keying and binary phase-shift keying formats, and non-Gaussian measurements based on photon number resolving detection of the coherently displaced signal. For a given power constraint and channel noise strength, these novel strategies rely on joint optimization of the input alphabet and the measurement to provide enhanced communication capability over a non-Gaussian channel characterized in terms of the error rate as well as mutual information. 
    more » « less