As quantum computing continues to scale, the ability to execute quantum circuits across distributed quantum networks is becoming increasingly important. While prior work has largely focused on distributing a single circuit to optimize the number of entanglement pairs (EPs) used or the execution time, future applications will require the efficient scheduling and execution of multiple circuits on a shared quantum network. Therefore, we study the problem of efficiently distributing multiple quantum circuits across a shared quantum network under decoherence and network constraints and seek to minimize the execution time required to execute all circuits (makespan). Solving the above problem involves jointly determining when and where each circuit should be executed, and how to schedule concurrent EP generation required to execute remote gates. We propose several algorithmic approaches for this multi-circuit distribution problem and provide theoretical performance guarantees for special cases. To assess the practical effectiveness of our methods, we conduct extensive simulations using the NetSquid quantum network simulator.
more »
« less
This content will become publicly available on July 30, 2026
DQC-QR: Distributing and Routing Quantum Circuits with Minimum Execution Time
Present quantum computers are constrained by limited qubit capacity and restricted physical connectivity, leading to challenges in large-scale quantum computations. Distributing quantum computations across a network of quantum computers is a promising way to circumvent these challenges and facilitate large quantum computations. However, distributed quantum computations require entanglements (to execute remote gates) which can incur significant generation latency and, thus, lead to decoherence of qubits. In this work, we consider the problem of distributing quantum circuits across a quantum network to minimize the execution time. The problem entails mapping the circuit qubits to network memories, including within each computer since limited connectivity within computers can affect the circuit execution time. We provide two-step solutions for the above problem: In the first step, we allocate qubits to memories to minimize the estimated execution time; for this step, we design an efficient algorithm based on an approximation algorithm for the max-quadratic-assignment problem. In the second step, we determine an efficient execution scheme, including generating required entanglements with minimum latency under the network resource and decoherence constraints; for this step, we develop two algorithms with appropriate performance guarantees under certain settings or assumptions. We consider multiple protocols for executing remote gates, viz., telegates and cat-entanglements. With extensive simulations over NetSquid, a quantum network simulator, we demonstrate the effectiveness of our developed techniques and show that they outperform a scheme based on prior work by 40 to\(50\% \)on average and up to 95% in some cases.
more »
« less
- Award ID(s):
- 2106447
- PAR ID:
- 10628826
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Quantum Computing
- ISSN:
- 2643-6809
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Gilbert, Seth (Ed.)Quantum computing hardware is improving in robustness, but individual computers still have small number of qubits (for storing quantum information). Computations needing a large number of qubits can only be performed by distributing them over a network of smaller quantum computers. In this paper, we consider the problem of distributing a quantum computation, represented as a quantum circuit, over a homogeneous network of quantum computers, minimizing the number of communication operations needed to complete every step of the computation. We propose a two-step solution: dividing the given circuit’s qubits among the computers in the network, and scheduling communication operations, called migrations, to share quantum information among the computers to ensure that every operation can be performed locally. While the first step is an intractable problem, we present a polynomial-time solution for the second step in a special setting, and a O(log n)-approximate solution in the general setting. We provide empirical results which show that our two-step solution outperforms existing heuristic for this problem by a significant margin (up to 90%, in some cases).more » « less
-
Quantum algorithms will likely play a key role in future high-performance-computing (HPC) environments. These algorithms are typically expressed as quantum circuits composed of arbitrary gates or as unitary matrices. Executing these on physical devices, however, requires translation to device-compatible circuits, in a process called quantum compilation or circuit synthesis, since these devices support a limited number of native gates. Moreover, these devices typically have specific qubit topologies, which constrain how and where gates can be applied. Consequently, logical qubits in input circuits and unitaries may need to be mapped to and routed between physical qubits. Furthermore, current Noisy Intermediate-Scale Quantum (NISQ) devices present additional constraints. They are vulnerable to errors during gate application and their short decoherence times lead to qubits rapidly succumbing to accumulated noise and possibly corrupting computations. Therefore, circuits synthesized for NISQ devices need to minimize gates and execution times. The problem of synthesizing device-compatible circuits, while optimizing for low gate count and short execution times, can be shown to be computationally intractable using analytical methods. Therefore, interest has grown towards heuristics-based synthesis techniques, which are able to produce approximations of the desired algorithm, while optimizing depth and gate-count. In this work, we investigate using genetic algorithms (GA)—a proven gradient-free optimization technique based on natural selection—for circuit synthesis. In particular, we formulate the quantum synthesis problem as a multi-objective optimization (MOO) problem, with the objectives of minimizing the approximation error, number of multi-qubit gates, and circuit depth. We also employ fuzzy logic for runtime parameter adaptation of GA to enhance search efficiency and solution quality in our proposed method.more » « less
-
Quantum systems have the potential to demonstrate significant computational advantage, but current quantum devices suffer from the rapid accumulation of error that prevents the storage of quantum information over extended periods. The unintentional coupling of qubits to their environment and each other adds significant noise to computation, and improved methods to combat decoherence are required to boost the performance of quantum algorithms on real machines. While many existing techniques for mitigating error rely on adding extra gates to the circuit [ 13 , 20 , 56 ], calibrating new gates [ 50 ], or extending a circuit’s runtime [ 32 ], this article’s primary contribution leverages the gates already present in a quantum program without extending circuit duration. We exploit circuit slack for single-qubit gates that occur in idle windows, scheduling the gates such that their timing can counteract some errors. Spin-echo corrections that mitigate decoherence on idling qubits act as inspiration for this work. Theoretical models, however, fail to capture all sources of noise in Noisy Intermediate Scale Quantum devices, making practical solutions necessary that better minimize the impact of unpredictable errors in quantum machines. This article presents TimeStitch: a novel framework that pinpoints the optimum execution schedules for single-qubit gates within quantum circuits. TimeStitch, implemented as a compilation pass, leverages the reversible nature of quantum computation to boost the success of circuits on real quantum machines. Unlike past approaches that apply reversibility properties to improve quantum circuit execution [ 35 ], TimeStitch amplifies fidelity without violating critical path frontiers in either the slack tuning procedures or the final rescheduled circuit. On average, compared to a state-of-the-art baseline, a practically constrained TimeStitch achieves a mean 38% relative improvement in success rates, with a maximum of 106%, while observing bounds on circuit depth. When unconstrained by depth criteria, TimeStitch produces a mean relative fidelity increase of 50% with a maximum of 256%. Finally, when TimeStitch intelligently leverages periodic dynamical decoupling within its scheduling framework, a mean 64% improvement is observed over the baseline, relatively outperforming stand-alone dynamical decoupling by 19%, with a maximum of 287%.more » « less
-
Dynamically field-programmable qubit arrays (DPQA) have recently emerged as a promising platform for quantum information processing. In DPQA, atomic qubits are selectively loaded into arrays of optical traps that can be reconfigured during the computation itself. Leveraging qubit transport and parallel, entangling quantum operations, different pairs of qubits, even those initially far away, can be entangled at different stages of the quantum program execution. Such reconfigurability and non-local connectivity present new challenges for compilation, especially in the layout synthesis step which places and routes the qubits and schedules the gates. In this paper, we consider a DPQA architecture that contains multiple arrays and supports 2D array movements, representing cutting-edge experimental platforms. Within this architecture, we discretize the state space and formulate layout synthesis as a satisfiability modulo theories problem, which can be solved by existing solvers optimally in terms of circuit depth. For a set of benchmark circuits generated by random graphs with complex connectivities, our compiler OLSQ-DPQA reduces the number of two-qubit entangling gates on small problem instances by 1.7x compared to optimal compilation results on a fixed planar architecture. To further improve scalability and practicality of the method, we introduce a greedy heuristic inspired by the iterative peeling approach in classical integrated circuit routing. Using a hybrid approach that combined the greedy and optimal methods, we demonstrate that our DPQA-based compiled circuits feature reduced scaling overhead compared to a grid fixed architecture, resulting in 5.1X less two-qubit gates for 90 qubit quantum circuits. These methods enable programmable, complex quantum circuits with neutral atom quantum computers, as well as informing both future compilers and future hardware choices.more » « less
An official website of the United States government
