Present quantum computers are constrained by limited qubit capacity and restricted physical connectivity, leading to challenges in large-scale quantum computations. Distributing quantum computations across a network of quantum computers is a promising way to circumvent these challenges and facilitate large quantum computations. However, distributed quantum computations require entanglements (to execute remote gates) which can incur significant generation latency and, thus, lead to decoherence of qubits. In this work, we consider the problem of distributing quantum circuits across a quantum network to minimize the execution time. The problem entails mapping the circuit qubits to network memories, including within each computer since limited connectivity within computers can affect the circuit execution time. We provide two-step solutions for the above problem: In the first step, we allocate qubits to memories to minimize the estimated execution time; for this step, we design an efficient algorithm based on an approximation algorithm for the max-quadratic-assignment problem. In the second step, we determine an efficient execution scheme, including generating required entanglements with minimum latency under the network resource and decoherence constraints; for this step, we develop two algorithms with appropriate performance guarantees under certain settings or assumptions. We consider multiple protocols for executing remote gates, viz., telegates and cat-entanglements. With extensive simulations over NetSquid, a quantum network simulator, we demonstrate the effectiveness of our developed techniques and show that they outperform a scheme based on prior work by 40 to\(50\% \)on average and up to 95% in some cases.
more »
« less
This content will become publicly available on September 10, 2026
Efficient Execution of Multiple Quantum Circuits over a Quantum Network
As quantum computing continues to scale, the ability to execute quantum circuits across distributed quantum networks is becoming increasingly important. While prior work has largely focused on distributing a single circuit to optimize the number of entanglement pairs (EPs) used or the execution time, future applications will require the efficient scheduling and execution of multiple circuits on a shared quantum network. Therefore, we study the problem of efficiently distributing multiple quantum circuits across a shared quantum network under decoherence and network constraints and seek to minimize the execution time required to execute all circuits (makespan). Solving the above problem involves jointly determining when and where each circuit should be executed, and how to schedule concurrent EP generation required to execute remote gates. We propose several algorithmic approaches for this multi-circuit distribution problem and provide theoretical performance guarantees for special cases. To assess the practical effectiveness of our methods, we conduct extensive simulations using the NetSquid quantum network simulator.
more »
« less
- Award ID(s):
- 2106447
- PAR ID:
- 10628827
- Publisher / Repository:
- IEEE
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Graph states form an important class of multipartite entangled quantum states. We propose a new approach for distributing graph states across a quantum network. We consider a quantum network consisting of nodes—quantum computers within which local operations are free—and EPR pairs shared between nodes that can continually be generated. We prove upper bounds for our approach on the number of EPR pairs consumed, completion time, and amount of classical communication required, all of which are equal to or better than that of prior work [10]. We also reduce the problem of minimizing the completion time to distribute a graph state using our approach to a network flow problem having polynomial time complexity.more » « less
-
Abstract Realizing the potential of near-term quantum computers to solve industry-relevant constrained-optimization problems is a promising path to quantum advantage. In this work, we consider the extractive summarization constrained-optimization problem and demonstrate the largest-to-date execution of a quantum optimization algorithm that natively preserves constraints on quantum hardware. We report results with the Quantum Alternating Operator Ansatz algorithm with a Hamming-weight-preserving XY mixer (XY-QAOA) on trapped-ion quantum computer. We successfully execute XY-QAOA circuits that restrict the quantum evolution to the in-constraint subspace, using up to 20 qubits and a two-qubit gate depth of up to 159. We demonstrate the necessity of directly encoding the constraints into the quantum circuit by showing the trade-off between the in-constraint probability and the quality of the solution that is implicit if unconstrained quantum optimization methods are used. We show that this trade-off makes choosing good parameters difficult in general. We compare XY-QAOA to the Layer Variational Quantum Eigensolver algorithm, which has a highly expressive constant-depth circuit, and the Quantum Approximate Optimization Algorithm. We discuss the respective trade-offs of the algorithms and implications for their execution on near-term quantum hardware.more » « less
-
Gilbert, Seth (Ed.)Quantum computing hardware is improving in robustness, but individual computers still have small number of qubits (for storing quantum information). Computations needing a large number of qubits can only be performed by distributing them over a network of smaller quantum computers. In this paper, we consider the problem of distributing a quantum computation, represented as a quantum circuit, over a homogeneous network of quantum computers, minimizing the number of communication operations needed to complete every step of the computation. We propose a two-step solution: dividing the given circuit’s qubits among the computers in the network, and scheduling communication operations, called migrations, to share quantum information among the computers to ensure that every operation can be performed locally. While the first step is an intractable problem, we present a polynomial-time solution for the second step in a special setting, and a O(log n)-approximate solution in the general setting. We provide empirical results which show that our two-step solution outperforms existing heuristic for this problem by a significant margin (up to 90%, in some cases).more » « less
-
null (Ed.)Due to the unreliability and limited capacity of existing quantum computer prototypes, quantum circuit simulation continues to be a vital tool for validating next generation quantum computers and for studying variational quantum algorithms, which are among the leading candidates for useful quantum computation. Existing quantum circuit simulators do not address the common traits of variational algorithms, namely: 1) their ability to work with noisy qubits and operations, 2) their repeated execution of the same circuits but with different parameters, and 3) the fact that they sample from circuit final wavefunctions to drive a classical optimization routine. We present a quantum circuit simulation toolchain based on logical abstractions targeted for simulating variational algorithms. Our proposed toolchain encodes quantum amplitudes and noise probabilities in a probabilistic graphical model, and it compiles the circuits to logical formulas that support efficient repeated simulation of and sampling from quantum circuits for different parameters. Compared to state-of-the-art state vector and density matrix quantum circuit simulators, our simulation approach offers greater performance when sampling from noisy circuits with at least eight to 20 qubits and with around 12 operations on each qubit, making the approach ideal for simulating near-term variational quantum algorithms. And for simulating noise-free shallow quantum circuits with 32 qubits, our simulation approach offers a 66X reduction in sampling cost versus quantum circuit simulation techniques based on tensor network contraction.more » « less
An official website of the United States government
