Abstract We present and evaluate the prospects for detecting coherent radio counterparts to gravitational wave (GW) events using Murchison Widefield Array (MWA) triggered observations. The MWA rapid-response system, combined with its buffering mode ($$\sim$$4 min negative latency), enables us to catch any radio signals produced from seconds prior to hours after a binary neutron star (BNS) merger. The large field of view of the MWA ($$\sim$$$$1\,000\,\textrm{deg}^2$$at 120 MHz) and its location under the high sensitivity sky region of the LIGO-Virgo-KAGRA (LVK) detector network, forecast a high chance of being on-target for a GW event. We consider three observing configurations for the MWA to follow up GW BNS merger events, including a single dipole per tile, the full array, and four sub-arrays. We then perform a population synthesis of BNS systems to predict the radio detectable fraction of GW events using these configurations. We find that the configuration with four sub-arrays is the best compromise between sky coverage and sensitivity as it is capable of placing meaningful constraints on the radio emission from 12.6% of GW BNS detections. Based on the timescales of four BNS merger coherent radio emission models, we propose an observing strategy that involves triggering the buffering mode to target coherent signals emitted prior to, during or shortly following the merger, which is then followed by continued recording for up to three hours to target later time post-merger emission. We expect MWA to trigger on$$\sim$$$$5-22$$BNS merger events during the LVK O4 observing run, which could potentially result in two detections of predicted coherent emission.
more »
« less
Altitude estimation of radio frequency interference sources via interferometric near-field corrections
Abstract Radio-frequency interference (RFI) presents a significant obstacle to current radio interferometry experiments aimed at the Epoch of Reionization. RFI contamination is often several orders of magnitude brighter than the astrophysical signals of interest, necessitating highly precise identification and flagging. Although existing RFI flagging tools have achieved some success, the pervasive nature of this contamination leads to the rejection of excessive data volumes. In this work, we present a way to estimate an RFI emitter’s altitude using near-field corrections. Being able to obtain the precise location of such an emitter could shift the strategy from merely flagging to subtracting or peeling the RFI, allowing us to preserve a higher fraction of usable data. We conduct a preliminary study using a two-minute observation from the Murchison-Widefield Array (MWA) in which an unknown object briefly crosses the field of view, reflecting RFI signals into the array. By applying near-field corrections that bring the object into focus, we are able to estimate its approximate altitude and speed to be$$11.7$$km and 792 km/h, respectively. This allows us to confidently conclude that the object in question is in fact an airplane. We further validate our technique through the analysis of two additional RFI-containing MWA observations, where we are consistently able to identify airplanes as the source of the interference.
more »
« less
- Award ID(s):
- 2228989
- PAR ID:
- 10629101
- Publisher / Repository:
- Publications of the Astronomical Society of Australia
- Date Published:
- Journal Name:
- Publications of the Astronomical Society of Australia
- Volume:
- 42
- ISSN:
- 1323-3580
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We investigate the effectiveness of the statistical radio frequency interference (RFI) mitigation technique spectral kurtosis ( ) in the face of simulated realistic RFI signals. estimates the kurtosis of a collection ofMpower values in a single channel and provides a detection metric that is able to discern between human-made RFI and incoherent astronomical signals of interest. We test the ability of to flag signals with various representative modulation types, data rates, duty cycles, and carrier frequencies. We flag with various accumulation lengthsMand implement multiscale , which combines information from adjacent time-frequency bins to mitigate weaknesses in single-scale . We find that signals with significant sidelobe emission from high data rates are harder to flag, as well as signals with a 50% effective duty cycle and weak signal-to-noise ratios. Multiscale with at least one extra channel can detect both the center channel and sideband interference, flagging greater than 90% as long as the bin channel width is wider in frequency than the RFI.more » « less
-
Abstract Let$$P_1, \ldots , P_m \in \mathbb {K}[\mathrm {y}]$$be polynomials with distinct degrees, no constant terms and coefficients in a general local field$$\mathbb {K}$$. We give a quantitative count of the number of polynomial progressions$$x, x+P_1(y), \ldots , x + P_m(y)$$lying in a set$$S\subseteq \mathbb {K}$$of positive density. The proof relies on a general$$L^{\infty }$$inverse theorem which is of independent interest. This inverse theorem implies a Sobolev improving estimate for multilinear polynomial averaging operators which in turn implies our quantitative estimate for polynomial progressions. This general Sobolev inequality has the potential to be applied in a number of problems in real, complex andp-adic analysis.more » « less
-
Abstract We study the late-time evolution of the compact Type IIb SN 2001ig in the spiral galaxy NGC 7424, with new and unpublished archival data from the Australia Telescope Compact Array and the Australian Square Kilometre Array Pathfinder. More than two decades after the SN explosion, its radio luminosity is showing a substantial re-brightening: it is now two orders of magnitude brighter than expected from the standard model of a shock expanding into a uniform circumstellar wind (i.e. with a density scaling as$$R^{-2}$$). This suggests that the SN ejecta have reached a denser shell, perhaps compressed by the fast wind of the Wolf–Rayet progenitor or expelled centuries before the final stellar collapse. We model the system parameters (circumstellar density profile, shock velocity, and mass loss rate), finding that the denser layer was encountered when the shock reached a distance of$$\approx 0.1$$pc; the mass-loss rate of the progenitor immediately before the explosion was$$\dot{M}/v_{w} \sim 10^{-7} {\rm M}_\odot {\mathrm {~yr}}^{-1} {\mathrm {km}}^{-1} {\mathrm {s}}$$. We compare SN 2001ig with other SNe that have shown late-time re-brightenings, and highlight the opposite behaviour of some extended Type IIb SNe which show instead a late-time flux cut-off.more » « less
-
Abstract For a connected reductive groupGover a nonarchimedean local fieldFof positive characteristic, Genestier-Lafforgue and Fargues-Scholze have attached a semisimple parameter$${\mathcal {L}}^{ss}(\pi )$$to each irreducible representation$$\pi $$. Our first result shows that the Genestier-Lafforgue parameter of a tempered$$\pi $$can be uniquely refined to a tempered L-parameter$${\mathcal {L}}(\pi )$$, thus giving the unique local Langlands correspondence which is compatible with the Genestier-Lafforgue construction. Our second result establishes ramification properties of$${\mathcal {L}}^{ss}(\pi )$$for unramifiedGand supercuspidal$$\pi $$constructed by induction from an open compact (modulo center) subgroup. If$${\mathcal {L}}^{ss}(\pi )$$is pure in an appropriate sense, we show that$${\mathcal {L}}^{ss}(\pi )$$is ramified (unlessGis a torus). If the inducing subgroup is sufficiently small in a precise sense, we show$$\mathcal {L}^{ss}(\pi )$$is wildly ramified. The proofs are via global arguments, involving the construction of Poincaré series with strict control on ramification when the base curve is$${\mathbb {P}}^1$$and a simple application of Deligne’s Weil II.more » « less
An official website of the United States government

