skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 5, 2026

Title: Nonvanishing Eliashberg gap function in YBa2Cu3O7 above Tc
This paper presents the numerical solution of the temperature dependent Eliashberg gap equations on the real axis for anisotropic superconductor YBa2Cu3O7 (YBCO) for below and above the calculated Tc. In those numerical calculations, the results of the first-principles electronic structure of YBCO were integrated into the Eliashberg gap equations based on the theory of many-body physics for superconductivity. As demonstrated previously,[1] the calculated Tc for YBCO was about 89 K for μ* = 0.1, which was quite close to that of experimental observations. For T < Tc, there is a large anisotropy of superconducting gap on the Fermi surface of YBCO.[2,3] Furthermore, above Tc, such as 105 K, it was found that the real part of gap function is not zero at finite frequency, although for the frequency near 0, the real part of gap function is zero. The results may be used to understand some pseudogap state properties in the material.  more » « less
Award ID(s):
2216805
PAR ID:
10629145
Author(s) / Creator(s):
Editor(s):
Coniglio, Gabriele
Publisher / Repository:
Elsevier B.V
Date Published:
Journal Name:
Physics Open
Volume:
25
Issue:
C
ISSN:
2666-0326
Page Range / eLocation ID:
100304
Subject(s) / Keyword(s):
First-principles calculation YBa2Cu3O7 Gap function Pseudogap state
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We have grown and characterized (110)-oriented YBa2Cu3O7−x (YBCO)/PrBa2(Cu0.8Ga0.2)3O7−x (PBCGO) bilayer and YBCO/PBCGO/YBCO trilayer heterostructures, which were deposited by pulsed laser deposition technique for the nanofabrication of (110)-oriented YBCO-based superconductor (S)/insulator (I)/superconductor (S) tunneling vertical geometry Josephson junction and other superconductor electronic devices. The structural properties of these heterostructures, investigated through various x-ray diffraction techniques (profile, x-ray reflectivity, pole figure, and reciprocal mapping), showed (110)-oriented epitaxial growth with a preferred c-axis-in-plane direction for all layers of the heterostructures. The atomic force microscopy measurement on the top surface of the heterostructures showed crack-free and pinhole-free, compact surface morphology with about a few nanometer root mean square roughness over the 5 × 5 μm2 region. The electrical resistivity measurements on the (110)-direction of the heterostructures showed superconducting critical temperature (Tc) values above 77 K and a very small proximity effect due to the interfacial contact of the superconducting YBCO layers with the PBCGO insulating layer. Raman spectroscopy measurements on the heterostructures showed the softening of the Ag-type Raman modes associated with the apical oxygen O(4) and O(2)-O(3)-in-phase vibrations compared to the stand-alone (110)-oriented PBCGO due to the residual stress and additional two Raman modes at ∼600 and ∼285 cm−1 frequencies due to the disorder at the Cu–O chain site of the PBCGO. The growth process and structural, electrical transport, and Raman spectroscopy characterization of (110)-oriented YBCO/PBCGO bilayer and YBCO/PBCGO/YBCO trilayer heterostructures are discussed in detail. 
    more » « less
  2. A new member of the transition metal dichalcogenide (TMD) family, 2M-WS 2, has been recently discovered and shown to display superconductivity with a critical temperature (Tc) of 8.8 K, the highest Tc among superconducting TMDs at ambient pressure. Using first-principles calculations combined with the Migdal-Eliashberg formalism, we explore how the superconducting properties of 2M-WS 2 can be enhanced through doping. Mo, Nb, and Ta are used as dopants at the W sites, while Se is used at the S sites. We demonstrate that the monotonous decrease in the Tc observed experimentally for Mo and Se doping is due to the decrease in density of states at the Fermi level and the electron–phonon coupling of the low-energy phonons. In addition, we find that a noticeable increase in the electron–phonon coupling could be achieved when doping with Nb and Ta, leading to an enhancement of the Tc of up to 50% compared to the undoped compound. 
    more » « less
  3. Abstract In a recent study by Wang et al. that introduced a dynamical efficiency to the intensification potential of a tropical cyclone (TC) system, a simplified energetically based dynamical system (EBDS) model was shown to be able to capture the intensity dependence of TC potential intensification rate (PIR) in both idealized numerical simulations and observations. Although the EBDS model can capture the intensity dependence of TC intensification as in observations, a detailed evaluation has not yet been done. This study provides an evaluation of the EBDS model in reproducing the intensity-dependent feature of the observed TC PIR based on the best track data for TCs over the North Atlantic and central, eastern, and western North Pacific during 1982–2019. Results show that the theoretical PIR estimated by the EBDS model can capture basic features of the observed PIR reasonably well. The TC PIR in the best track data increases with increasing relative TC intensity [intensity normalized by its corresponding maximum potential intensity (MPI)] and reaches a maximum at an intermediate relative intensity around 0.6, and then decreases with increasing relative intensity to zero as the TC approaches its MPI, as in idealized numerical simulations. Results also show that the PIR for a given relative intensity increases with the increasing MPI and thus increasing sea surface temperature, which is also consistent with the theoretical PIR implied by the EBDS model. In addition, future directions to include environmental effects and make the EBDS model applicable to predict intensity change of real TCs are also discussed. 
    more » « less
  4. The leading order nonlinear (NL) susceptibility, χ3, in a paramagnet is negative and diverges as T → 0. This divergence is destroyed when spins correlate and the NL response provides unique insights into magnetic order. Dimensionality, exchange interaction, and preponderance of quantum effects all imprint their signatures in the NL magnetic response. Here, we study the NL susceptibilities in the proximate Kitaev magnet α-RuCl3, which differs from the expected antiferromagnetic behavior. For T < Tc = 7.5 K and field B in the ab-plane, we obtain contrasting NL responses in low (<2 T) and high field regions. For low fields, the NL behavior is dominated by a quadratic response (positive χ2), which shows a rapid rise below Tc. This large χ2 > 0 implies a broken sublattice symmetry of magnetic order at low temperatures. Classical Monte Carlo (CMC) simulations in the standard K − H − Γ model secure such a quadratic B dependence of M, only for T ≈ Tc with χ2 being zero as T → 0. It is also zero for all temperatures in exact diagonalization calculations. On the other hand, we find an exclusive cubic term (χ3) that describes the high field NL behavior well. χ3 is large and positive both below and above Tc crossing zero only for T > 50 K. In contrast, for B ∥ c-axis, no separate low/high field behaviors are measured and only a much smaller χ3 is apparent. 
    more » « less
  5. Abstract In this article, for Hamiltonian systems with two degrees of freedom, we study doubly symmetric periodic orbits, i.e., those which are symmetric with respect to two (distinct) commuting antisymplectic involutions. These are ubiquitous in several problems of interest in mechanics. We show that, in dimension four, doubly symmetric periodic orbits cannot be negative hyperbolic. This has a number of consequences: (1) All covers of doubly symmetric orbits are good , in the sense of Symplectic Field Theory (Eliashberg et al. Geom Funct Anal Special Volume Part II:560–673, 2000); (2) a non-degenerate doubly symmetric orbit is stable if and only if its CZ-index is odd; (3) a doubly symmetric orbit does not undergo period doubling bifurcation; and (4) there is always a stable orbit in any collection of doubly symmetric periodic orbits with negative SFT-Euler characteristic (as coined in Frauenfelder et al. in Symplectic methods in the numerical search of orbits in real-life planetary systems. Preprint arXiv:2206.00627 ). The above results follow from: (5) A symmetric orbit is negative hyperbolic if and only its two B - signs (introduced in Frauenfelder and Moreno 2021) differ. 
    more » « less