Abstract Many subspecies were described to capture phenotypic variation in wide-ranging taxa, with some later being found to correspond to divergent genetic lineages. We investigate whether currently recognized subspecies correspond to distinctive and coherent evolutionary lineages in the widespread Australian lizard Ctenotus pantherinus based on morphological, mitochondrial and genome-wide nuclear variation. We find weak and inconsistent correspondence between morphological patterns and the presumed subspecies ranges, with character polymorphism within regions and broad morphological overlap across regions. Phylogenetic analyses suggest paraphyly of populations assignable to each subspecies, mitonuclear discordance and little congruence between subspecies ranges and the distribution of inferred clades. Genotypic clustering supports admixture across regions. These results undermine the presumed phenotypic and genotypic coherence and distinctiveness of C. pantherinus subspecies. Based on our findings, we comment on the operational and conceptual shortcomings of morphologically defined subspecies and discuss practical challenges in applying the general notion of subspecies as incompletely separated population lineages. We conclude by highlighting a historical asymmetry that has implications for ecology, evolution and conservation: subspecies proposed in the past are difficult to falsify even in the face of new data that challenge their coherence and distinctiveness, whereas modern researchers appear hesitant to propose new subspecies.
more »
« less
A phylogenomic perspective reveals mitochondrial-nuclear discordance and previously undescribed species nested within a widespread East African Reed frog species (Hyperolius substriatus Ahl, 1931)
The sub-montane East African Reed Frog,Hyperolius substriatusAhl, 1931 (Spotted Reed Frog) has a fragmented highland distribution throughout East Africa. Previous studies show extensive mitochondrial divergence between four lineages of African Spotted Reed Frogs that roughly correspond to previously-recognized subspecies. These may have conservation implications if formally described. However, as mitochondrial-based population models only track maternal patterns, further genomic datasets are necessary to assess the distinctness of these lineages in relation to historically recognized morphological subspecies. In this study, we expanded sampling to newly discovered localities and assessed mitochondrial and genomic data to better understand phylogeography and landscape genomics of this species. We found that genomic clades (biparentally inherited) confirm some of the mitochondrial structure (female inherited), but also revealed multiple cases of mitonuclear discordance particularly within the Udzungwa Mountain block, which may have two separate founding events based on peripatric mitochondrial lineages and panmictic genomic signals. Taken together, the three clades within the geographical range ofH. substriatusthrough Tanzania, Malawi, and Mozambique correspond to three previously-identified subspecies and lineages, and have both spatially cohesive and population-specific patterns of geneflow and isolation with neighboring highland locations.
more »
« less
- Award ID(s):
- 2020886
- PAR ID:
- 10629580
- Editor(s):
- Meegaskumbura, Madhava
- Publisher / Repository:
- the Public Library of Science (PLOS)
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 20
- Issue:
- 4
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0318951
- Subject(s) / Keyword(s):
- mitochondrial-nuclear discordance phylogenomics phylogeography African amphibians montane amphibians
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Species delimitation using mitochondrial DNA (mtDNA) remains an important and accessible approach for discovering and delimiting species. However, delimiting species with a single locus (e.g. DNA barcoding) is biased towards overestimating species diversity. The highly diverse gecko genusCyrtodactylusis one such group where delimitation using mtDNA remains the paradigm. In this study, we use genomic data to test putative species boundaries established using mtDNA within three recognized species ofCyrtodactyluson the island of Borneo. We predict that multi-locus genomic data will estimate fewer species than mtDNA, which could have important ramifications for the species diversity within the genus. We aim to (i) investigate the correspondence between species delimitations using mtDNA and genomic data, (ii) infer species trees for each target species, and (iii) quantify gene flow and identify migration patterns to assess population connectivity. We find that species diversity is overestimated and that species boundaries differ between mtDNA and nuclear data. This underscores the value of using genomic data to reassess mtDNA-based species delimitations for taxa lacking clear species boundaries. We expect the number of recognized species withinCyrtodactylusto continue increasing, but, when possible, genomic data should be included to inform more accurate species boundaries.more » « less
-
The Andean and Atlantic forests are separated by the open vegetation corridor, which acts as a geographic barrier. However, these forests experienced cycles of connection and isolation in the past, which shaped the phylogeographic patterns of their biotas. We analysed the evolutionary history of the rufous‐capped antshrikeThamnophilus ruficapillus, a species with a disjunct distribution in the Atlantic and Andean forests and thus an appropriate model to study the effect of the open vegetation corridor and the Andes on the diversification of the Neotropical avifauna. We performed a phylogenetic/phylogeographic analysis, including the five subspecies, using mitochondrial and nuclear genomic DNA, and studied their differences in vocalizations and plumage coloration. Both the mitochondrial and nuclear DNA evidenced a marked phylogeographic structure with three differentiated lineages that diverged without signs of gene flow in the Pleistocene (1.0–1.7 million years ago): one in the Atlantic Forest and two in the Andean forest. However, the two Andean lineages do not coincide with the two disjunct areas of distribution of the species in the Andes. Vocalizations were significantly different between most subspecies, but their pattern of differentiation was discordant with that of the nuclear and mitochondrial DNA. In fact, we did not find song differentiation between the subspecies of the Atlantic Forest and that of the northwestern Bolivian Andes, even though they differ genetically and belong to different lineages. Consistently, no differences were found in plumage coloration between the subspecies of the Atlantic Forest and that of the southern Andes. Our results suggest a complex evolutionary history in this species, which differentiated both due to dispersion across the open vegetation corridor, likely during a period of connection between the Andean and Atlantic forests, and the effect of the Bolivian Altiplano as a geographic barrier. In both cases, Pleistocene climatic oscillations appear to have influenced the species diversification.more » « less
-
Abstract Global change is impacting biodiversity across all habitats on earth. New selection pressures from changing climatic conditions and other anthropogenic activities are creating heterogeneous ecological and evolutionary responses across many species' geographic ranges. Yet we currently lack standardised and reproducible tools to effectively predict the resulting patterns in species vulnerability to declines or range changes.We developed an informatic toolbox that integrates ecological, environmental and genomic data and analyses (environmental dissimilarity, species distribution models, landscape connectivity, neutral and adaptive genetic diversity, genotype‐environment associations and genomic offset) to estimate population vulnerability. In our toolbox, functions and data structures are coded in a standardised way so that it is applicable to any species or geographic region where appropriate data are available, for example individual or population sampling and genomic datasets (e.g. RAD‐seq, ddRAD‐seq, whole genome sequencing data) representing environmental variation across the species geographic range.To demonstrate multi‐species applicability, we apply our toolbox to three georeferenced genomic datasets for co‐occurring East African spiny reed frogs (Afrixalus fornasini, A. delicatusandA. sylvaticus) to predict their population vulnerability, as well as demonstrating that range loss projections based on adaptive variation can be accurately reproduced from a previous study using data for two European bat species (Myotis escaleraiandM. crypticus).Our framework sets the stage for large scale, multi‐species genomic datasets to be leveraged in a novel climate change vulnerability framework to quantify intraspecific differences in genetic diversity, local adaptation, range shifts and population vulnerability based on exposure, sensitivity and landscape barriers.more » « less
-
Chiang, Tzen-Yuh (Ed.)The spiny-throated reed frog species group is a small radiation of Hyperolius frogs from East Africa. Unlike many members of the genus which have relatively wide distributions, these species tend to be small-range endemics found in montane and submontane forests. Recent discovery of a golden-hued frog with the clade-specific traits of spines on their gular discs prompted a morphological and genetic exploration of the distinctness of this new lineage and relationships to other members of the clade. Genetic (mitochondrial and nuclear loci) results resolved many sister-relationships, but deeper nodes in the phylogeny were poorly resolved. A reduced-representation genome-wide Single Nucleotide Polymorphism (SNP) dataset was able to fully resolve the phylogenetic relationships within this clade, placing this new lineage, here named after the mountain range in which is it found– H . ukaguruensis sp. nov., as an early diverging lineage within the group. This new species is distinct from all other spiny-throated reed frogs, necessitating further understanding as a single-mountain endemics vulnerable to habitat loss and potential decline. Morphometric analyses identify clear morphological characteristics that are distinct for the herein described species, most noticeably in that the eyes are significantly smaller than other members of the genus for which we have samples.more » « less
An official website of the United States government

