skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 7, 2026

Title: High-Efficiency mmWave-to-Optical Converter with >30dB Sideband SNR on a Monolithic Integration Platform
We demonstrate a dual-cavity modulator based mm-wave to optical converter on GF45SPCLO platform. An optical energy conversion efficiency at -29.8 dB and a side-band SNR at 30.7 dB are reported.  more » « less
Award ID(s):
2328946 2235466
PAR ID:
10629811
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optica Publishing Group
Date Published:
Page Range / eLocation ID:
SS167
Format(s):
Medium: X
Location:
Long Beach, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a nanogap-enhanced phase-change waveguide with silicon PIN heaters. Thanks to the enhanced light-matter interaction in the nanogap, the proposed structure exhibits strong attenuation (Δα = ∼35 dB/µm) and optical phase (Δneff = ∼1.2) modulation atλ = 1550 nm when achieving complete phase transitions. We further investigate two active optical devices based on the proposed waveguide, including an electro-absorption modulator and a 1 × 2 directional-coupler optical switch. Finite-difference time-domain simulation of the proposed modulator shows a high extinction ratio of ∼17 dB at 1550 nm with an active segment of volume only ∼0.004λ3. By exploiting a directional coupler design, we present a 1 × 2 optical switch with an insertion loss of < 4 dB and a compact coupling length of ∼ 15 µm while maintaining small crosstalk less than −7.2 dB over an optical bandwidth of 50 nm. Thermal analysis shows that a 10 V pulse of 30 ns (1×1 modulator) and 55 ns (1×2 switch) in duration is required to raise the GST temperature of the phase-change waveguide above the melting temperature to induce the amorphization; however, the complete crystallization occurs by applying a 5 V pulse of 180 ns (1×1 modulator) and a 6 V pulse of 200 ns (1×2 switch), respectively. 
    more » « less
  2. An optical switch based on an electrowetting prism coupled to a multimode fiber has demonstrated a large extinction ratio with speeds up to 300 Hz. Electrowetting prisms provide a transmissive, low power, and compact alternative to conventional free-space optical switches, with no moving parts. The electrowetting prism performs beam steering of ±3°with an extinction ratio of 47 dB between the ON and OFF states and has been experimentally demonstrated at scanning frequencies of 100–300 Hz. The optical design is modeled in Zemax to account for secondary rays created at each surface interface (without scattering). Simulations predict 50 dB of extinction, in good agreement with experiment. 
    more » « less
  3. Density-based topology optimization is used to design large-scale, multi-layer grating couplers that comply with commercial foundry fabrication constraints while simultaneously providing beam profiles that efficiently couple to a single-mode optical fiber without additional optics. Specifically, we describe the design process and experimentally demonstrate both single- and dual-polarization grating couplers that couple at normal incidence (0° from the normal) with low backreflections (-13.7 dB and -15.4 dB at the center wavelength), broad 3 dB bandwidths (75 nm and 89 nm), and standard coupling efficiencies (-4.7 dB and -7.0 dB). The dual-polarization grating couplers exhibit over 30 dB of polarization extinction across the entire band. The devices were fabricated on the GlobalFoundries 45CLO CMOS platform and characterized across three separate wafers. This new design approach produces distinct features for multiple foundry layers and yields emitters with arbitrary, user-specified far-field profiles. 
    more » « less
  4. Robust, low-loss photonic packaging of on-chip nanophotonic circuits is a key enabling technology for the deployment of integrated photonics in a variety of classical and quantum technologies including optical communications and quantum communications, sensing, and transduction. To date, no process has been established that enables permanent, broadband, and cryogenically compatible coupling with sub-dB losses from optical fibers to nanophotonic circuits. Here, we report a technique for reproducibly generating a permanently packaged interface between a tapered optical fiber and nanophotonic devices on diamond with a record-low coupling loss <1 dB per facet at near-infrared wavelengths (∼730 nm) that remains stable from 300 K to 30 mK. We further demonstrate the compatibility of this technique with etched lithium niobate on insulator waveguides. The technique lifts performance limitations imposed by scattering as light transfers between photonic devices and optical fibers, paving the way for scalable integration of photonic technologies at both room and cryogenic temperatures. 
    more » « less
  5. Optical isolators are an essential component of photonic systems. Current integrated optical isolators have limited bandwidths due to stringent phase-matching conditions, resonant structures, or material absorption. Here, we demonstrate a wideband integrated optical isolator in thin-film lithium niobate photonics. We use dynamic standing-wave modulation in a tandem configuration to break Lorentz reciprocity and achieve isolation. We measure an isolation ratio of 15 dB and insertion loss below 0.5 dB for a continuous wave laser input at 1550 nm. In addition, we experimentally show that this isolator can simultaneously operate at visible and telecom wavelengths with comparable performance. Isolation bandwidths up to ∼100 nm can be achieved simultaneously at both visible and telecom wavelengths, limited only by the modulation bandwidth. Our device’s dual-band isolation, high flexibility, and real-time tunability can enable novel non-reciprocal functionality on integrated photonic platforms. 
    more » « less