Abstract By means of a unifying measure-theoretic approach, we establish lower bounds on the Hausdorff dimension of the space-time set which can support anomalous dissipation for weak solutions of fluid equations, both in the presence or absence of a physical boundary. Boundary dissipation, which can occur at both the time and the spatial boundary, is analyzed by suitably modifying the Duchon & Robert interior distributional approach. One implication of our results is that any bounded Euler solution (compressible or incompressible) arising as a zero viscosity limit of Navier–Stokes solutions cannot have anomalous dissipation supported on a set of dimension smaller than that of the space. This result is sharp, as demonstrated by entropy-producing shock solutions of compressible Euler (Drivas and Eyink in Commun Math Phys 359(2):733–763, 2018.https://doi.org/10.1007/s00220-017-3078-4; Majda in Am Math Soc 43(281):93, 1983.https://doi.org/10.1090/memo/0281) and by recent constructions of dissipative incompressible Euler solutions (Brue and De Lellis in Commun Math Phys 400(3):1507–1533, 2023.https://doi.org/10.1007/s00220-022-04626-0 624; Brue et al. in Commun Pure App Anal, 2023), as well as passive scalars (Colombo et al. in Ann PDE 9(2):21–48, 2023.https://doi.org/10.1007/s40818-023-00162-9; Drivas et al. in Arch Ration Mech Anal 243(3):1151–1180, 2022.https://doi.org/10.1007/s00205-021-01736-2). For$$L^q_tL^r_x$$ suitable Leray–Hopf solutions of the$$d-$$ dimensional Navier–Stokes equation we prove a bound of the dissipation in terms of the Parabolic Hausdorff measure$$\mathcal {P}^{s}$$ , which gives$$s=d-2$$ as soon as the solution lies in the Prodi–Serrin class. In the three-dimensional case, this matches with the Caffarelli–Kohn–Nirenberg partial regularity.
more »
« less
Vector-Valued Maximal Inequalities and Multiparameter Oscillation Inequalities for the Polynomial Ergodic Averages Along Multi-dimensional Subsets of Primes
Abstract We prove uniform$$\ell ^2$$ -valued maximal inequalities for polynomial ergodic averages and truncated singular operators of Cotlar type modeled over multidimensional subsets of primes. In the averages case, we combine this with earlier one-parameter oscillation estimates (Mehlhop and Słomian in Math Ann, 2023,https://doi.org/10.1007/s00208-023-02597-8) to prove corresponding multiparameter oscillation estimates. This provides a fuller quantitative description of the pointwise convergence of the mentioned averages and is a generalization of the polynomial Dunford–Zygmund ergodic theorem attributed to Bourgain (Mirek et al. in Rev Mat Iberoam 38:2249–2284, 2022).
more »
« less
- Award ID(s):
- 2154712
- PAR ID:
- 10630011
- Publisher / Repository:
- Birkhauser
- Date Published:
- Journal Name:
- Journal of Fourier Analysis and Applications
- Volume:
- 30
- Issue:
- 6
- ISSN:
- 1069-5869
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We establish weak-type (1, 1) bounds for the maximal function associated with ergodic averaging operators modeled on a wide class of thin deterministic setsB. As a corollary we obtain the corresponding pointwise convergence result on$$L^1$$ . This contributes yet another counterexample for the conjecture of Rosenblatt and Wierdl from 1991 asserting the failure of pointwise convergence on$$L^1$$ of ergodic averages along arithmetic sets with zero Banach density. The second main result is a multiparameter pointwise ergodic theorem in the spirit of Dunford and Zygmund alongBon$$L^p$$ ,$$p>1$$ , which is derived by establishing uniform oscillation estimates and certain vector-valued maximal estimates.more » « less
-
Abstract Given a suitable solutionV(t, x) to the Korteweg–de Vries equation on the real line, we prove global well-posedness for initial data$$u(0,x) \in V(0,x) + H^{-1}(\mathbb {R})$$ . Our conditions onVdo include regularity but do not impose any assumptions on spatial asymptotics. We show that periodic profiles$$V(0,x)\in H^5(\mathbb {R}/\mathbb {Z})$$ satisfy our hypotheses. In particular, we can treat localized perturbations of the much-studied periodic traveling wave solutions (cnoidal waves) of KdV. In the companion paper Laurens (Nonlinearity. 35(1):343–387, 2022.https://doi.org/10.1088/1361-6544/ac37f5) we show that smooth step-like initial data also satisfy our hypotheses. We employ the method of commuting flows introduced in Killip and Vişan (Ann. Math. (2) 190(1):249–305, 2019.https://doi.org/10.4007/annals.2019.190.1.4) where$$V\equiv 0$$ . In that setting, it is known that$$H^{-1}(\mathbb {R})$$ is sharp in the class of$$H^s(\mathbb {R})$$ spaces.more » « less
-
Abstract This article revisits the problem of global well-posedness for the generalized parabolic Anderson model on$$\mathbb {R}^+\times \mathbb {T}^2$$ within the framework of paracontrolled calculus (Gubinelli et al. in Forum Math, 2015). The model is given by the equation:$$\begin{aligned} (\partial _t-\Delta ) u=F(u)\eta \end{aligned}$$ where$$\eta \in C^{-1-\kappa }$$ with$$1/6>\kappa >0$$ , and$$F\in C_b^2(\mathbb {R})$$ . Assume that$$\eta \in C^{-1-\kappa }$$ and can be lifted to enhanced noise, we derive new a priori bounds. The key idea follows from the recent work by Chandra et al. (A priori bounds for 2-d generalised Parabolic Anderson Model,,2024), to represent the leading error term as a transport type term, and our techniques encompass the paracontrolled calculus, the maximum principle, and the localization approach (i.e. high-low frequency argument).more » « less
-
Abstract The isodynamic points of a plane triangle are known to be the only pair of its centers invariant under the action of the Möbius group$${\mathcal {M}}$$ on the set of triangles, Kimberling (Encyclopedia of Triangle Centers,http://faculty.evansville.edu/ck6/encyclopedia). Generalizing this classical result, we introduce below theisodynamicmap associating to a univariate polynomial of degree$$d\ge 3$$ with at most double roots a polynomial of degree (at most)$$2d-4$$ such that this map commutes with the action of the Möbius group$${\mathcal {M}}$$ on the zero loci of the initial polynomial and its image. The roots of the image polynomial will be called theisodynamic pointsof the preimage polynomial. Our construction naturally extends from univariate polynomials to binary forms and further to their ratios.more » « less
An official website of the United States government

