skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: A Comparative Study of Principled rPPG-Based Pulse Rate Tracking Algorithms for Fitness Activities
Performance improvements obtained by recent principled approaches for pulse rate (PR) estimation from face videos have typically been achieved by adding or modifying certain modules within a reconfigurable system. Yet, evaluations of such remote photoplethysmography (rPPG) are usually performed only at the system level. To better understand each module's contribution and facilitate future research in explainable learning and artificial intelligence for physiological monitoring, this paper conducts a comparative study of video-based, principled PR tracking algorithms, with a focus on challenging fitness scenarios. A review of the progress achieved over the last decade and a half in this field is utilized to construct the major processing modules of a reconfigurable remote pulse rate sensing system. Experiments are conducted on two challenging datasets—an internal collection of 25 videos of two Asian males exercising on stationary-bike, elliptical, and treadmill machines, and 34 videos from a public ECG fitness database of 14 men and 3 women exercising on elliptical and stationary-bike machines. The signal-to-noise ratio (SNR), Pearson's correlation coefficient, error count ratio, error rate, and root mean squared error are used for performance evaluation. The top-performing configuration produces respective values of −0.8 dB, 0.86, 9%, 1.7%, and 3.3 beats per minute (bpm) for the internal dataset and 1.3 dB, 0.77, 28.6%, 6.0%, and 8.1 bpm for the ECG Fitness dataset, achieving significant improvements over alternative configurations. Our results suggest a synergistic effect between pulse color mapping and adaptive motion filtering, as well as the importance of a robust frequency tracking algorithm for PR estimation in low SNR settings.  more » « less
Award ID(s):
2124291 2030502
PAR ID:
10630048
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Biomedical Engineering
Volume:
72
Issue:
1
ISSN:
0018-9294
Page Range / eLocation ID:
152-165
Subject(s) / Keyword(s):
Heart/pulse rate (HR/PR) remote photoplethysmography (rPPG) fitness exercise pulse color mapping motion compensation frequency tracking explainable AI
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Camera-based physiological measurement enables vital signs to be captured unobtrusively without contact with the body. Remote, or imaging, photoplethysmography involves recovering peripheral blood flow from subtle variations in video pixel intensities. While the pulse signal might be easy to obtain from high quality uncompressed videos, the signal-to-noise ratio drops dramatically with video bitrate. Uncompressed videos incur large file storage and data transfer costs, making analysis, manipulation and sharing challenging. To help address these challenges, we use compression specific supervised models to mitigate the effect of temporal video compression on heart rate estimates. We perform a systematic evaluation of the performance of state-of-the-art algorithms across different levels, and formats, of compression. We demonstrate that networks trained on compressed videos consistently outperform other benchmark methods, both on stationary videos and videos with significant rigid head motions. By training on videos with the same, or higher compression factor than test videos, we achieve improvements in signal-to-noise ratio (SNR) of up to 3 dB and mean absolute error (MAE) of up to 6 beats per minute (BPM). 
    more » « less
  2. Introduction:Seismocardiography (SCG) - measurements of cardiovascular-induced vibrations on the chest - has shown potential for providing clinical information for cardiac conditions. SCG is conventionally recorded by an accelerometer attached to a single point on chest. Recent research suggests multichannel SCG (mSCG) - measurements from multiple chest locations - can provide extra and more accurate clinical information. Current mSCG methods are limited to accelerometer arrays, laser Doppler vibrometry, and airborne ultrasound that are either costly, difficult for inexperienced users, or need bulky equipment, thereby impeding their use beyond research or clinical settings. Hypothesis:mSCG signals can be accurately estimated from tiny chest movements in chest videos recorded by ordinary cameras, e.g., those in smartphones. Methods:We enrolled 10 subjects (sbjs) with no history of CVDs (21.7 ± 1.7 years, 40% women). ECG and chest video of sbjs were recorded at rest for 15 sec during breath hold at the end of inhalation followed by another 15 sec recording during breath hold at the end of exhalation. We developed an AI-powered mobile app to record the chest videos and convert them to 0-30 Hz mSCG in right-to-left (RL) and head-to-foot (HF) directions (Fig 1a). Heart rate (HR) based on ECG RR interval and mSCG was measured and compared. Results:HR estimated from mSCG in both RL and HF directions had a good agreement with ECG-based HR using Bland-Altman analysis [RL: bias = 1.4 bpm, 95% CI = 5.6 bpm; HF: bias = 0.8 bpm, 95% CI = 6.2 bpm (Fig 1b)]. High-quality mSCG and ECG measurements were obtained for all sbjs. Conclusion:Clinically relevant information can be accurately extracted from chest videos using our novel, contactless, AI-based method. Given that the vast majority of Americans have access to a camera phone, future developments of this method may provide new means of remote and accessible cardiac monitoring. 
    more » « less
  3. Baba, Justin S; Coté, Gerard L (Ed.)
    In this research, we examine the potential of measuring physiological variables, including heart rate (HR) and respiration rate (RR) on the upper arm using a wireless multimodal sensing system consisting of an accelerometer, a gyroscope, a three-wavelength photoplethysmography (PPG), single-sided electrocardiography (SS-ECG), and bioimpedance (BioZ). The study included collecting HR data when the subject was at rest and typing, and RR data when the subject was at rest. The data from three wavelengths of PPG and BioZ were collected and compared to the SS-ECG as the standard. The accelerometer and gyro signals were used to exclude data with excessive noise due to motion. The results showed that when the subject remained sedentary, the mean absolute error (MAE) for the HR calculation for all three wavelengths of the PPG modality was less than two bpm, while the BioZ was 3.5 bpm compared with SS-ECG HR. The MAE for typing increased for both modalities and was less than three bpm for all three wavelengths of the PPG but increased to 7.5 bpm for the BioZ. Regarding RR, both modalities resulted in RR within one breath per minute of the SS-ECG modality for the one breathing rate. Overall, all modalities on this upper arm wearable worked well when the subject was sedentary. Still, the SS-ECG and PPG showed less variability for the HR signal in the presence of motion during micro-motions such as typing. 
    more » « less
  4. Inter-beat interval (IBI) measurement enables estimation of heart-tare variability (HRV) which, in turn, can provide early indication of potential cardiovascular diseases (CVDs). However, extracting IBIs from noisy signals is challenging since the morphology of the signal gets distorted in the presence of noise. Electrocardiogram (ECG) of a person in heavy motion is highly corrupted with noise, known as motion-artifact, and IBI extracted from it is inaccurate. As a part of remote health monitoring and wearable system development, denoising ECG signals and estimating IBIs correctly from them have become an emerging topic among signal-processing researchers. Apart from conventional methods, deep-learning techniques have been successfully used in signal denoising recently, and diagnosis process has become easier, leading to accuracy levels that were previously unachievable. We propose a deep-learning approach leveraging tiramisu autoencoder model to suppress motion-artifact noise and make the R-peaks of the ECG signal prominent even in the presence of high-intensity motion. After denoising, IBIs are estimated more accurately expediting diagnosis tasks. Results illustrate that our method enables IBI estimation from noisy ECG signals with SNR up to -30 dB with average root mean square error (RMSE) of 13 milliseconds for estimated IBIs. At this noise level, our error percentage remains below 8% and outperforms other state-of-the-art techniques. 
    more » « less
  5. This article presents a novel eight-ary modulation technique with improved signal-to-noise ratio (SNR) compared to conventional pulse amplitude modulation 8 (PAM-8). The proposed SNR-enhanced 8-ary (SNRE-8) scheme modulates pulse width, position, and amplitude to improve the SNR. The proposed SNRE-8 modulation leverages the wireline channel loss to perform the modulation. Digital decoding of mutually exclusive eyes generated by the proposed SNRE-8 modulation further improves the eye margin at the receiver. A 27-Gb/s transceiver is implemented in a 65-nm CMOS process employing the proposed modulation. A PAM-8 transmitter is implemented on the same chip for comparison purposes. Compared to the PAM-8 modulation, the proposed SNRE-8 modulation shows an average SNR improvement of 10.6 dB at the near-end eye at the cost of 6.6% eye width reduction. With the aid of a time-domain feed-forward equalizer (FFE) and a continuous-time linear equalizer (CTLE), the proposed SNRE-8 transceiver achieves a bit error rate (BER) of 10−8 on a 9-dB loss channel with an energy efficiency of 5.39 pJ/bit. 
    more » « less