Abstract Low‐strain cyclic olefin monomers, including five‐membered, six‐membered, eight‐membered, and macrocyclic rings, have been recently exploited for the synthesis of depolymerizable polyolefins via ring‐opening metathesis polymerization (ROMP). Such polyolefins can undergo ring‐closing metathesis depolymerization (RCMD) to regenerate their original monomers. Nevertheless, the depolymerization behavior of polyolefins prepared by ROMP of seven‐membered cyclic olefins, an important class of low‐strain rings, still remains unexplored. In this study, we demonstrate the chemical recycling of polyheptenamers to cycloheptene under standard RCMD conditions. Highly efficient depolymerization of polyheptenamer was enabled by Grubbs' second‐generation catalyst in toluene. It was observed that the monomer yields increased when the depolymerization temperature increased and the starting polymer concentration was reduced. A near‐quantitative monomer regeneration (>96%) was achieved within 1 h under dilute conditions (20 mM of olefins) at 60°C. Moreover, polyheptenamer exhibited a decomposition temperature above 430°C, highlighting its potential as a new class of thermally stable and chemically recyclable polymer materials.
more »
« less
Ring Expansion via One-Pot Conversion of Lactone Acetals to Cyclic Enones. Synthesis of (±)-1- epi -Xerantholide
Baeyer-Villiger oxidation of alpha-alkoxy ketones 1 provides lactone acetals 2, which react with the lithium salts of di-methyl(alkyl) phosphonates in the presence of LaCl3•2LiCl to provide cyclic enones 3 in good to excellent yields after treatment with dilute aqueous potassium carbonate. Thus, five-, six-, and seven-membered lactones are con-verted to five-, six-, and seven membered cyclic enones. The utility of this two-step ring expansion method is demonstrated in the synthesis of (±)-1-epi-xerantholide from 5-methyl-2-cyclohexen-1-one.
more »
« less
- Award ID(s):
- 2003261
- PAR ID:
- 10630099
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Organic Letters
- Volume:
- 26
- Issue:
- 41
- ISSN:
- 1523-7060
- Page Range / eLocation ID:
- 8691 to 8695
- Subject(s) / Keyword(s):
- Total Synthesis Organic Chemistry Ring Expansion Medium-ring Synthesis
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Structural effects on the reprocessability and stress relaxation of crosslinked polyhydroxyurethanesABSTRACT Crosslinked polyhydroxyurethane (PHU) networks synthesized from difunctional six‐membered cyclic carbonates and triamines are reprocessable at elevated temperatures through transcarbamoylation reactions. Here we study the structural effects on reprocessability and stress relaxation in crosslinked PHUs. Crosslinked PHUs derived frombis(five‐membered cyclic carbonates) are shown to decompose at temperatures needed for reprocessing, likely via initial reversion of the PHU linkage and subsequent side reactions of the liberated amine and cyclic carbonate. Therefore, several six‐membered cyclic carbonate‐based PHUs with varying polymer backbones and crosslink densities were synthesized. These networks show large differences in the Arrhenius activation energy of stress relaxation (from 99 to 136 kJ/mol) that depend on the network structure, suggesting that transcarbamoylation reactions may be highly affected by both chemical and mechanical effects. Furthermore, all crosslinked PHUs derived from six‐membered cyclic carbonates show mechanical properties typical of thermoset polymers, but recovered as much as 80% of their as‐synthesized tensile properties after elevated temperature compression molding. These studies provide significant insight into factors affecting the reprocessability of PHUs and inform design criteria for the future synthesis of sustainable and repairable crosslinked PHUs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2017,134, 44984.more » « less
-
Synthetic transformation of d -xylose into a four-membered cyclic ether allows for reactions with carbon dioxide (CO 2 ) leading to linear polycarbonates by either a one-step ring-opening copolymerisation (ROCOP) directly, or by sequential isolation of a preformed six-membered cyclic carbonate followed by ring-opening polymerisation (ROP).more » « less
-
The structures of three racemic (tetrahydro-[1,3]dioxino[5,4-d][1,3]dioxin-4-yl)methanol derivatives are reported, namely, 4-[(methylsulfonyloxy)methyl]-2,4,4a,6,8,8a-hexahydro-[1,3]dioxino[5,4-d][1,3]dioxine, C8H14O7S,1, 4-[(benzyloxy)methyl]-2,4,4a,6,8,8a-hexahydro-[1,3]dioxino[5,4-d][1,3]dioxine, C14H18O5,2, and 4-[(anilinocarbonyl)methyl]-2,4,4a,6,8,8a-hexahydro-[1,3]dioxino[5,4-d][1,3]dioxine, C14H17NO6,3. Mesylate ester1at 173 K has triclinicP\overline{1} symmetry and both benzyl ether2at 173 K and phenyl urethane3have monoclinicP21/csymmetry. These structures are of interest because of the conformation of thecis-fused tetraoxadecalin ring system. Thiscis-bicyclo[4.4.0]decane ring system,i.e. cis-decalin, can undergo conformational equilibration. In the two most stable conformers, both six-membered rings adopt a chair conformation. However, there are significant consequences in these two stable conformers, with heteroatom substitution at the 1,3,5,7-ring positions as described. Only one conformation, denoted as `concave' or `inside', is found in these crystal structures. This is consistent with previously reported structures of the 1,1-geminal dihydroxy aldehyde and tosylate analogs.more » « less
-
Lactones are cyclic esters with extensive applications in materials science, medicinal chemistry, and the food and perfume industries. Nature’s strategy for the synthesis of many lactones found in natural products always relies on a single type of retrosynthetic strategy, a C−O bond disconnection. Here, we describe a set of laboratory-engineered enzymes that use a new-tonature C−C bond-forming strategy to assemble diverse lactone structures. These engineered “carbene transferases” catalyze intramolecular carbene insertions into benzylic or allylic C−H bonds, which allow for the synthesis of lactones with different ring sizes and ring scaffolds from simple starting materials. Starting from a serine-ligated cytochrome P450 variant previously engineered for other carbene-transfer activities, directed evolution generated a variant P411-LAS-5247, which exhibits a high activity for constructing a five-membered ε-lactone, lactam, and cyclic ketone products (up to 5600 total turnovers (TTN) and >99% enantiomeric excess (ee)). Further engineering led to variants P411-LAS-5249 and P411-LAS-5264, which deliver six-membered δ-lactones and seven-membered ε-lactones, respectively, overcoming the thermodynamically unfavorable ring strain associated with these products compared to the γ-lactones. This new carbene-transfer activity was further extended to the synthesis of complex lactone scaffolds based on fused, bridged, and spiro rings. The enzymatic platform developed here complements natural biosynthetic strategies for lactone assembly and expands the structural diversity of lactones accessible through C−H functionalization.more » « less
An official website of the United States government

