ABSTRACT AimEcological theory suggests that dispersal limitation and selection by climatic factors influence bacterial community assembly at a continental scale, yet the conditions governing the relative importance of each process remains unclear. The carnivorous pitcher plantSarracenia purpureaprovides a model aquatic microecosystem to assess bacterial communities across the host plant's north–south range in North America. This study determined the relative influences of dispersal limitation and environmental selection on the assembly of bacterial communities inhabitingS. purpureapitchers at the continental scale. LocationEastern United States and Canada. Time Period2016. Major Taxa StudiedBacteria inhabitingS. purpureapitchers. MethodsPitcher morphology, fluid, inquilines and prey were measured, and pitcher fluid underwent DNA sequencing for bacterial community analysis. Null modelling of β‐diversity provided estimates for the contributions of selection and dispersal limitation to community assembly, complemented by an examination of spatial clustering of individuals. Phylogenetic and ecological associations of co‐occurrence network module bacteria was determined by assessing the phylogenetic diversity and habitat preferences of member taxa. ResultsDispersal limitation was evident from between‐site variation and spatial aggregation of individual bacterial taxa in theS. purpureapitcher system. Selection pressure was weak across the geographic range, yet network module analysis indicated environmental selection within subgroups. A group of aquatic bacteria held traits under selection in warmer, wetter climates, and midge abundance was associated with selection for traits held by a group of saprotrophs. Processes that increased pitcher fluid volume weakened selection in one module, possibly by supporting greater bacterial dispersal. ConclusionDispersal limitation governed bacterial community assembly inS. purpureapitchers at a continental scale (74% of between‐site comparisons) and was significantly greater than selection across the range. Network modules showed evidence for selection, demonstrating that multiple processes acted concurrently in bacterial community assembly at the continental scale.
more »
« less
The Multidrug Efflux System AcrABZ-TolC Is Essential for Infection of Salmonella Typhimurium by the Flagellum-Dependent Bacteriophage Chi
Antimicrobial resistance is a large concern in the health care field. With more multidrug-resistant bacterial pathogens emerging, other techniques for eliminating bacterial infections are being explored.
more »
« less
- Award ID(s):
- 2054392
- PAR ID:
- 10630179
- Editor(s):
- Dutch, Rebecca Ellis
- Publisher / Repository:
- Journal of Virology
- Date Published:
- Journal Name:
- Journal of Virology
- Volume:
- 95
- Issue:
- 11
- ISSN:
- 0022-538X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Microplastics (MPs) are common environmental pollutants; however, little is known about their effects after ingestion by insects. Here we fed Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) mosquito larvae 1 µm polystyrene MPs and examined the impacts of ingestion on adult emergence rates, gut damage, and fungal and bacterial microbiota. Results show that MPs accumulate in the larval guts, resulting in gut damage. However, little impact on adult emergence rates was observed. MPs are also found in adult guts postemergence from the pupal stage, and adults expel MPs in their frass after obtaining sugar meals. Moreover, MPs effects on insect microbiomes need to be better defined. To address this knowledge gap, we investigated the relationship between MP ingestion and the microbial communities in Ae. albopictus and Ae. aegypti. The microbiota composition was altered by the ingestion of increasing concentrations of MPs. Amplicon sequence variants (ASVs) that contributed to differences in the bacterial and fungal microbiota composition between MP treatments were from the genera Elizabethkingia and Aspergillus, respectively. Furthermore, a decrease in the alpha diversity of the fungal and bacterial microbiota was observed in treatments where larvae ingested MPs. These results highlight the potential for the bacterial and fungal constituents in the mosquito microbiome to respond differently to the ingestion of MPs. Based on our findings and the effects of MP ingestion on the mosquito host micro- and mycobiome, MP pollution could impact the vector competence of important mosquito-transmitted viruses and parasites that cause human and animal diseases.more » « less
-
The gut of the European honey bee (Apis mellifera)possesses a relatively simple bacterial community, but little is known about its community of prophages (temperate bacteriophages integrated into the bacterial genome). Although prophages may eventually begin replicating and kill their bacterial hosts, they can also sometimes be beneficial for their hosts by conferring protection from other phage infections or encoding genes in metabolic pathways and for toxins. In this study, we explored prophages in 17 species of core bacteria in the honey bee gut and two honey bee pathogens. Out of the 181 genomes examined, 431 putative prophage regions were predicted. Among core gut bacteria, the number of prophages per genome ranged from zero to seven and prophage composition (the compositional percentage of each bacterial genome attributable to prophages) ranged from 0 to 7%.Snodgrassella alviandGilliamella apicolahad the highest median prophages per genome (3.0 ± 1.46; 3.0 ± 1.59), as well as the highest prophage composition (2.58% ± 1.4; 3.0% ± 1.59). The pathogenPaenibacillus larvaehad a higher median number of prophages (8.0 ± 5.33) and prophage composition (6.40% ± 3.08) than the pathogenMelissococcus plutoniusor any of the core bacteria. Prophage populations were highly specific to their bacterial host species, suggesting most prophages were acquired recently relative to the divergence of these bacterial groups. Furthermore, functional annotation of the predicted genes encoded within the prophage regions indicates that some prophages in the honey bee gut encode additional benefits to their bacterial hosts, such as genes in carbohydrate metabolism. Collectively, this survey suggests that prophages within the honey bee gut may contribute to the maintenance and stability of the honey bee gut microbiome and potentially modulate specific members of the bacterial community, particularlyS. alviandG. apicola.more » « less
-
Abstract Bacterial infections in cystic fibrosis (CF) patients are an emerging health issue and lead to a premature death. CF is a hereditary disease that creates a thick mucus in the lungs that is prone to bacterial biofilm formation, specificallyPseudomonas aeruginosabiofilms. These biofilms are very difficult to treat because many of them have antibiotic resistance that is worsened by the presence of extracellular DNA (eDNA). eDNA helps to stabilize biofilms and can bind antimicrobial compounds to lessen their effects. The metallo‐antimicrobial peptide Gaduscidin‐1 (Gad‐1) eradicates establishedP. aeruginosabiofilms through a combination of modes of action that includes nuclease activity that can cleave eDNA in biofilms. In addition, Gad‐1 exhibits synergistic activity when used with the antibiotics kanamycin and ciprofloxacin, thus making Gad‐1 a new lead compound for the potential treatment of bacterial biofilms in CF patients.more » « less
-
A<sc>bstract</sc> Heritable microbes shape host phenotypes and are important drivers of evolution. While interactions between insects and bacterial symbionts have been extensively studied, the prevalence and consequences of insect-viral symbiosis are an open question. We show that viral symbionts in the familyIflaviridaeare widespread among aphids, an important model for research on bacterial symbiosis. We discovered multiple new species of iflaviruses that are maintained in asexual lines without apparent fitness costs and are transmitted vertically from mothers to offspring. Using field data and phylogenetic evidence, we further show that aphid iflaviruses likely move horizontally across species, but through laboratory experiments, we demonstrated that horizontal transfer among species infesting the same host plants does not persist throughout clonal lineages. Using quantitative PCR and immunohistochemistry, we discovered that viral infections localize in the host fat bodies and developing embryos. Surprisingly, we also found viral infections inside bacteria-housing cells called bacteriocytes, with a positive correlation between viral and bacterial symbiont density, indicating a mechanism for vertical transmission. Together, our work suggests that iflaviruses are an important but previously unrecognized piece of aphid symbiosis and sets the stage to use this model to answer new questions about host-microbe associations. I<sc>mportance</sc>In recent years, the rise of metatranscriptome sequencing has led to the rapid discovery of novel viral sequences in insects. However, few studies have carefully investigated the dynamics of insect-virus interactions to produce a general understanding of viral symbiosis. Aphids are a significant agricultural pest but also an important model for understanding the evolution of host-microbe interactions and the molecular basis of bacterial symbiosis. We show that heritable iflaviruses are an important but previously unrecognized part of the aphid heritable microbiome, with viral symbionts transmitted alongside bacteria from mothers to offspring, potentially via specialized bacteriocytes that house symbiotic microbes. Our findings have important implications for furthering the understanding of insect-microbe symbiosis and the potential for biocontrol of agriculturally relevant pest species.more » « less
An official website of the United States government

