skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental Comparison of Slow Light and Subwavelength Waveguide Interferometer Sensors
We experimentally demonstrate slow light photonic crystal waveguide (PCW) and subwavelength waveguide (SWWG) loop terminated Mach-Zehnder interferometer (LT-MZI) sensors in a foundry-fabricated silicon-on-insulator (SOI) platform. We compare the experimental results on sensitivity and limit of detection (LOD) on the interferometer sensors with microcavity-type sensors. We show experimentally that 2-D PCW interferometers have higher phase sensitivities than SWWGs of the same length. Based on experimental results, 20- μ m-long 2-D PCW LT-MZI sensors and 200- μ m-long SWWG LT-MZI sensors achieve an LOD of 3.4×10−4 and 2.3×10−4 RIU, respectively, with nearly the same insertion losses in foundry-fabricated devices. We show that by considering the various sources of loss in our benchtop fiber-to-fiber photonic integrated circuit measurement system, it will be possible to reach 10−7 LOD in both slow light PCW and SWWG-based LT-MZI sensors with on-chip integrated light sources and detectors. We show via simulations and experiment that the LOD of a 20- μ m-long slow light PCW LT-MZI is equivalent to that of a 100- μ m-long SWWG LT-MZI, thus enabling more compact LT_MZI sensors when using slow light PCWs versus SWWGs  more » « less
Award ID(s):
2210707 2315085
PAR ID:
10630195
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE Sensors Journal
Date Published:
Journal Name:
IEEE Sensors Journal
Volume:
24
Issue:
20
ISSN:
1530-437X
Page Range / eLocation ID:
32023 to 32033
Subject(s) / Keyword(s):
Biosensors, chemical sensors, loop terminated Mach–Zehnder interferometer (LT-MZI), optical interferometer sensors, photonic crystal waveguide (PCW), silicon photonics, subwavelength waveguide (SWWG)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We experimentally demonstrated slow-wave-enhanced phase and spectral sensitivity in asymmetric Michelson interferometer (MI) sensors. Compared to Mach–Zehnder interferometers (MZI) that experimentally demonstrated a phase sensitivity of 84,000 rad/RIU-cm, the reflected path enhancement of the optical path length coupled with slow light enhancement with photonic crystal waveguides in on-chip slow light Michelson interferometer sensors resulted in experimentally demonstrated phase sensitivity of 277,750 rad/RIU-cm with theoretical phase sensitivity as high as 461,810 rad/RIU-cm, at the same form factor as the MZI of identical interferometer arm lengths. 
    more » « less
  2. García-Blanco, Sonia M.; Cheben, Pavel (Ed.)
    Diverse chip-based sensors utilizing integrated silicon photonics have been demonstrated in resonator and phase shifter/interferometer configurations. Till date, interferometric techniques with the Mach-Zehnder Interferometer (MZI) and Young’s interferometer have shown the lowest mass detection limits (in pg/mm2). Slow light in photonic crystal waveguides integrated with MZIs enables compact geometries due to enhanced optical path lengths as light propagates with high group index. In a typical MZI, light propagating in the signal arm overlaps with analytes and undergo a relative phase change with respect to the light in the reference arm which leads to measured output intensity changes. In this paper, using integrated photonic methods, we demonstrate a slow light enhanced Michelson interferometer (MI) biosensor, wherein the reference and signal arms are traversed twice by the propagating optical mode. As a result, the analyte interaction length is effectively doubled since the propagating optical mode undergoes twice the phase shift as would be observed in a MZI. In an asymmetric MI configuration, the resultant doubling of the phase shift is observed as a doubling of the resonance wavelength shift for a fixed change in the analyte concentration. The device sensitivity is thus doubled with respect to a conventional MZI while also effectively halving the geometric length compared to the MZI sensor 
    more » « less
  3. Miller, Benjamin L.; Weiss, Sharon M.; Danielli, Amos (Ed.)
    Evanescent field silicon photonics in a silicon-on-insulator or silicon-nitride-on-insulator platforms have been effectively utilized to demonstrate chemical and biosensors over the past decade with applications in the detection of nucleic acids and protein biomarkers for cancers, viruses and infectious diseases, and environmental toxins. By balancing the requirements for efficient low-loss transmission through the waveguide and enhancing light-matter interaction such as with molecules binding on the high index material surfaces in resonant microcavities, slow light and interferometer geometries, various high sensitivity biosensors have been experimentally demonstrated down to few femtograms/ml. various slotted microcavities and waveguides have been experimentally demonstrated. In recent years, subwavelength waveguides have demonstrated high bulk spectral sensitivities approaching ~500nm/RIU (RIU=refractive index unit) in periodic structures with lattice constant (Λ) <<(λ/2n eff ) where n eff is the effective index at wavelength λ. While most experimental demonstrations have been in subwavelength ring resonator geometries, in this research, in addition to experimental demonstration of bulk spectral sensitivity ~775nm/RIU in subwavelength waveguides in interferometer configurations, we investigate optimized geometries that can reach sensitivities ~70,000nm/RIU in compact dimensions. In contrast to Mach-Zehnder interferometer (MZI) sensors of the same geometric interferometer arm lengths, the reflected path in Michelson interferometers (MI) doubles the optical path length, and thus effectively doubles the phase shift in the presence of an analyte. The interference fringe linewidths are narrowed compared to the equivalent MZI and would thus enable smaller changes in analyte concentration to be discerned from the fringe spectra. 
    more » « less
  4. Miller, Benjamin L; Weiss, Sharon M; Danielli, Amos (Ed.)
    Changes in the real and imaginary parts of the waveguide effective index in the presence of analytes have been used in various microcavity and slow light devices for on-chip sensing and absorption spectroscopy respectively in diverse applications. Periodically patterned waveguide sensors in interferometer configurations can lead to small interferometer sizes comparable in dimensions to microcavity resonator sensors, and/or significantly higher sensitivities compared to resonator type sensors. We show our work with compact silicon photonic interferometer devices for on-chip biosensing and absorbance sensing, overcoming fabrication tolerances with post-fabrication phase trimming. 
    more » « less
  5. We experimentally demonstrate a compact on-chip narrowband Fourier Transform spectrometer (FTS) based on spatially heterodyned array of loop-terminated Mach-Zehnder interferometers (LT-MZIs) in a foundry fabricated silicon-on-insulator (SOI) platform for chip-integrated sensing applications. We demonstrate that LT-MZIs with the same progressive geometric path length difference between the spatially heterodyned arrayed interferometer arms, as in Mach-Zehnder interferometers (MZIs), double the optical phase delay and thus double the wavelength resolution compared to MZIs. Our proof-of-concept device demonstrates one method to address the bandwidth-resolution-compactness tradeoff inherent in on-chip FTSs. The resolution enhancement is significant for optical sensing applications in biosensing and chemical sensing requiring single digit picometers resolution within a narrow wavelength bandwidth in compact on-chip form factors. We discuss the challenges arising from fabrication imperfections in spatially heterodyned FTS in foundry fabricated chips. We propose a method to compensate for phase errors arising from fabrication imperfections within a narrow wavelength bandwidth in the FTS using the refractive index changes in the amorphous to crystalline phase transformations of phase change materials (PCMs), which would enable zero active power consumption during on-chip narrowband FTS operation. 
    more » « less