skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Graph theory approaches for molecular dynamics simulations
Abstract Graph theory, a branch of mathematics that focuses on the study of graphs (networks of nodes and edges), provides a robust framework for analysing the structural and functional properties of biomolecules. By leveraging molecular dynamics (MD) simulations, atoms or groups of atoms can be represented as nodes, while their dynamic interactions are depicted as edges. This network-based approach facilitates the characterization of properties such as connectivity, centrality, and modularity, which are essential for understanding the behaviour of molecular systems. This review details the application and development of graph theory-based models in studying biomolecular systems. We introduce key concepts in graph theory and demonstrate their practical applications, illustrating how innovative graph theory approaches can be employed to design biomolecular systems with enhanced functionality. Specifically, we explore the integration of graph theoretical methods with MD simulations to gain deeper insights into complex biological phenomena, such as allosteric regulation, conformational dynamics, and catalytic functions. Ultimately, graph theory has proven to be a powerful tool in the field of molecular dynamics, offering valuable insights into the structural properties, dynamics, and interactions of molecular systems. This review establishes a foundation for using graph theory in molecular design and engineering, highlighting its potential to transform the field and drive advancements in the understanding and manipulation of biomolecular systems.  more » « less
Award ID(s):
2144823
PAR ID:
10630231
Author(s) / Creator(s):
; ;
Publisher / Repository:
Cambridge Press
Date Published:
Journal Name:
Quarterly Reviews of Biophysics
Volume:
57
ISSN:
0033-5835
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study employs Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations to investigate interactions between water molecules and Poly(Nisopropylacrylamide) (PNIPAM). DFT reveals preferential water binding sites, with enhanced binding energy observed in the linker zone. Quantum Theory of Atoms in Molecules (QTAIM) and electron localization function (ELF) analyses highlight the roles of hydrogen bonding and steric hindrance. MD simulations unveil temperature-dependent hydration dynamics, with structural transitions marked by changes in the radius of gyration (Rg) and the radial distribution function (RDF), aligning with DFT findings. Our work goes beyond prior studies by combining a DFT, QTAIM and MD simulations approach across different PNIPAM monomer-to-30mer structures. It introduces a systematic quantification of pseudo-saturation thresholds and explores water clustering dynamics with structural specificity, which have not been previously reported in the literature. These novel insights establish a more complete molecular-level picture of PNIPAM hydration behavior and temperature responsiveness, emphasizing the importance of amide hydrogen and carbonyl oxygen sites in hydrogen bonding, which weakens above the lower critical solution temperature (LCST), resulting in increased hydrophobicity and paving the way for understanding water sorption mechanisms, offering guidance for future applications such as dehumidification and atmospheric water harvesting. 
    more » « less
  2. Abstract This review spotlights the role of atomic‐level modeling in research on metal‐organic frameworks (MOFs), especially the key methodologies of density functional theory (DFT), Monte Carlo (MC) simulations, and molecular dynamics (MD) simulations. The discussion focuses on how periodic and cluster‐based DFT calculations can provide novel insights into MOF properties, with a focus on predicting structural transformations, understanding thermodynamic properties and catalysis, and providing information or properties that are fed into classical simulations such as force field parameters or partial charges. Classical simulation methods, highlighting force field selection, databases of MOFs for high‐throughput screening, and the synergistic nature of MC and MD simulations, are described. By predicting equilibrium thermodynamic and dynamic properties, these methods offer a wide perspective on MOF behavior and mechanisms. Additionally, the incorporation of machine learning (ML) techniques into quantum and classical simulations is discussed. These methods can enhance accuracy, expedite simulation setup, reduce computational costs, as well as predict key parameters, optimize geometries, and estimate MOF stability. By charting the growth and promise of computational research in the MOF field, the aim is to provide insights and recommendations to facilitate the incorporation of computational modeling more broadly into MOF research. 
    more » « less
  3. Molecular dynamics (MD) simulations provide a powerful means of exploring the dynamic behavior of biomolecular systems at the atomic level. However, analyzing the vast data sets generated by MD simulations poses significant challenges. This article discusses the energy landscape visualization method (ELViM), a multidimensional reduction technique inspired by the energy landscape theory. ELViM transcends one-dimensional representations, offering a comprehensive analysis of the effective conformational phase space without the need for predefined reaction coordinates. We apply the ELViM to study the folding landscape of the antimicrobial peptide Polybia-MP1, showcasing its versatility in capturing complex biomolecular dynamics. Using dissimilarity matrices and a force-scheme approach, the ELViM provides intuitive visualizations, revealing structural correlations and local conformational signatures. The method is demonstrated to be adaptable, robust, and applicable to various biomolecular systems. 
    more » « less
  4. Abstract We present a graph‐theoretic approach to adaptively compute many‐body approximations in an efficient manner to perform (a) accurate post‐Hartree–Fock (HF) ab initio molecular dynamics (AIMD) at density functional theory (DFT) cost for medium‐ to large‐sized molecular clusters, (b) hybrid DFT electronic structure calculations for condensed‐phase simulations at the cost of pure density functionals, (c) reduced‐cost on‐the‐fly basis extrapolation for gas‐phase AIMD and condensed phase studies, and (d) accurate post‐HF‐level potential energy surfaces at DFT cost for quantum nuclear effects. The salient features of our approach are ONIOM‐like in that (a) the full system (cluster or condensed phase) calculation is performed at a lower level of theory (pure DFT for condensed phase or hybrid DFT for molecular systems), and (b) this approximation is improved through a correction term that captures all many‐body interactions up to any given order within a higher level of theory (hybrid DFT for condensed phase; CCSD or MP2 for cluster), combined through graph‐theoretic methods. Specifically, a region of chemical interest is coarse‐grained into a set of nodes and these nodes are then connected to form edges based on a given definition of local envelope (or threshold) of interactions. The nodes and edges together define a graph, which forms the basis for developing the many‐body expansion. The methods are demonstrated through (a) ab initio dynamics studies on protonated water clusters and polypeptide fragments, (b) potential energy surface calculations on one‐dimensional water chains such as those found in ion channels, and (c) conformational stabilization and lattice energy studies on homogeneous and heterogeneous surfaces of water with organic adsorbates using two‐dimensional periodic boundary conditions. 
    more » « less
  5. The `pre-train, prompt, predict' paradigm of large language models (LLMs) has achieved remarkable success in open-domain question answering (OD-QA). However, few works explore this paradigm in multi-document question answering (MD-QA), a task demanding a thorough understanding of the logical associations among the contents and structures of documents. To fill this crucial gap, we propose a Knowledge Graph Prompting (KGP) method to formulate the right context in prompting LLMs for MD-QA, which consists of a graph construction module and a graph traversal module. For graph construction, we create a knowledge graph (KG) over multiple documents with nodes symbolizing passages or document structures (e.g., pages/tables), and edges denoting the semantic/lexical similarity between passages or document structural relations. For graph traversal, we design an LLM-based graph traversal agent that navigates across nodes and gathers supporting passages assisting LLMs in MD-QA. The constructed graph serves as the global ruler that regulates the transitional space among passages and reduces retrieval latency. Concurrently, the graph traversal agent acts as a local navigator that gathers pertinent context to progressively approach the question and guarantee retrieval quality. Extensive experiments underscore the efficacy of KGP for MD-QA, signifying the potential of leveraging graphs in enhancing the prompt design and retrieval augmented generation for LLMs. Our code: https://github.com/YuWVandy/KG-LLM-MDQA. 
    more » « less