skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 16, 2026

Title: Assessing Occurrence Patterns of Shallow Hikurangi Slow Slip Events Using Renewal Processes
Abstract We investigate the occurrence patterns of SSEs along the shallow (15 km) portion of the Hikurangi subduction zone. First, we build a manual catalog constraining timing and length of 92 SSEs between 2006 and 2024. Then, we investigate SSE occurrence patterns by fitting a renewal process, using Bayesian inference to obtain the posterior distribution of model parameters. Our results show that SSE recurrence intervals vary along the Hikurangi margin; less frequent SSEs occur in the southern part of the margin. The periodicity of SSEs also changes along strike. SSEs in the northern part of the margin occur more regularly than those at the central part. Finally, we do not find conclusive evidence that 2016 7.8 Kaikōura earthquake had a lasting effect on SSE occurrence patterns.  more » « less
Award ID(s):
2121666
PAR ID:
10630291
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
52
Issue:
13
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    The Hikurangi Margin (HM) is a subduction zone along the east coast of the North Island of New Zealand where varying instances of slow slip events (SSEs) and earthquakes occur. These SSEs occur at different time scales and depths when comparing the northern and southern ends of the margin. Previous studies show that the rock comprising the accretionary wedge of the northern margin have low permeabilities, which could induce overpressures and modulate the occurrence of SSEs. Permeability rises when an SSE fractures the rocks within the deep wedge promoting fluid flow and thus dissipating the overpressures along and above the décollement. As fractures heal and permeability recovers overpressures build up once again. Although this cycle may explain the occurrence of SSEs along northern Hikurangi, it is not yet clear how intrinsic permeability varies in rocks above the décollement elsewhere along the margin. To better understand the disparity in SSE occurrence, rock samples from the northern and central part of the margin have been tested for permeability and elastic properties. We tested samples from the Weber, Whangai, Dannevirke and Wanstead formations, which are representative of the lithologies above the décollement in the central margin, and range in age from the Cretaceous to the mid to late Paleogene. We found that the Weber (PQ) and Whangai (PO) formation samples from central HM have higher permeability than northern HM rocks from the same formation in the north. This study provides insight into the mechanisms that lead to significantly fewer SSEs along the central HM. In the near future, we plan to conduct a suite of physical experiments that will include permeability recovery after fracturing, compaction, and ultrasonic velocity analysis to help further understand the stark differences in slip behavior observed along the margin. 
    more » « less
  2. Abstract Current earthquake forecasting approaches are mainly based on probabilistic assumptions, as earthquakes seem to occur randomly. Such apparent randomness can however be caused by deterministic chaos, rendering deterministic short‐term forecasts possible. Due to the short historical and instrumental record of earthquakes, chaos detection has proven challenging, but more frequently occurring slow slip events (SSE) are promising candidates to probe for determinism. Here, we characterize the SSE signatures obtained from GNSS position time series in the Hikurangi Subduction Zone (New Zealand) to investigate whether the seemingly random SSE occurrence is governed by chaotic determinism. We find evidence for deterministic chaos for stations recording shallow SSEs, suggesting that short‐term deterministic forecasting of SSEs, similar to weather forecasts, might indeed be possible over timescales of a few weeks. We anticipate that our findings could open the door for next‐generation SSE forecasting, adding new tools to existing probabilistic approaches. 
    more » « less
  3. null (Ed.)
    Slow slip events (SSEs) at the northern Hikurangi subduction margin, New Zealand, are among the best-documented shallow SSEs on Earth. International Ocean Discovery Program Expedition 375 aims to investigate the processes and in situ conditions that underlie subduction zone SSEs at northern Hikurangi through coring of the frontal thrust, upper plate, and incoming sedimentary succession and through installation of borehole observatories in the frontal thrust and upper plate above the slow slip source area. Logging-while-drilling (LWD) data for this project will be acquired as part of Expedition 372 (beginning in November 2017; see the Expedition 372 Scientific Prospectus for further details on the LWD acquisition program). Northern Hikurangi subduction margin SSEs recur every 2 years and thus provide an excellent setting to monitor deformation and associated chemical and physical properties surrounding the SSE source area throughout the slow slip cycle. Sampling material from the sedimentary section and oceanic basement of the subducting plate and from the primary active thrust in the outer wedge near the trench will reveal the rock properties, composition, and lithologic and structural character of the material transported downdip to the known SSE source region. A recent seafloor geodetic experiment shows the possibility that SSEs at northern Hikurangi may propagate all the way to the trench, indicating that the shallow fault zone target for Expedition 375 may lie within the SSE rupture area. Four primary sites are planned for coring, and observatories will be installed at two of these sites. Expedition 375 (together with the Hikurangi subduction component of Expedition 372) is designed to address three fundamental scientific objectives: (1) characterize the state and composition of the incoming plate and shallow plate boundary fault near the trench, which comprise the protolith and initial conditions for fault zone rock at greater depth; (2) characterize material properties, thermal regime, and stress conditions in the upper plate above the SSE source region; and (3) install observatories at the frontal thrust and in the upper plate above the SSE source to measure temporal variations in deformation, fluid flow, and seismicity. The observatories will monitor deformation and the evolution of physical, hydrological, and chemical properties throughout the SSE cycle. Together, the coring, logging, and observatory data will test a suite of hypotheses about the fundamental mechanics and behavior of slow slip events and their relationship to great earthquakes along the subduction interface. 
    more » « less
  4. null (Ed.)
    Slow slip events (SSEs) at the northern Hikurangi subduction margin, New Zealand, are among the best-documented shallow SSEs on Earth. International Ocean Discovery Program Expedition 375 was undertaken to investigate the processes and in situ conditions that underlie subduction zone SSEs at the northern Hikurangi Trough by (1) coring at four sites, including an active fault near the deformation front, the upper plate above the high-slip SSE source region, and the incoming sedimentary succession in the Hikurangi Trough and atop the Tūranganui Knoll Seamount, and (2) installing borehole observatories in an active thrust near the deformation front and in the upper plate overlying the slow slip source region. Logging-while-drilling (LWD) data for this project were acquired as part of Expedition 372 (26 November 2017–4 January 2018; see the Expedition 372 Preliminary Report for further details on the LWD acquisition program). Northern Hikurangi subduction margin SSEs recur every 1–2 years and thus provide an ideal opportunity to monitor deformation and associated changes in chemical and physical properties throughout the slow slip cycle. Sampling of material from the sedimentary section and oceanic basement of the subducting plate reveals the rock properties, composition, lithology, and structural character of material that is transported downdip into the SSE source region. A recent seafloor geodetic experiment raises the possibility that SSEs at northern Hikurangi may propagate all the way to the trench, indicating that the shallow thrust fault zone targeted during Expedition 375 may also lie in the SSE rupture area. Hence, sampling at this location provides insights into the composition, physical properties, and architecture of a shallow fault that may host slow slip. Expedition 375 (together with the Hikurangi subduction LWD component of Expedition 372) was designed to address three fundamental scientific objectives: (1) characterize the state and composition of the incoming plate and shallow plate boundary fault near the trench, which comprise the protolith and initial conditions for fault zone rock at greater depth and which may itself host shallow slow slip; (2) characterize material properties, thermal regime, and stress conditions in the upper plate above the core of the SSE source region; and (3) install observatories at an active thrust near the deformation front and in the upper plate above the SSE source to measure temporal variations in deformation, temperature, and fluid flow. The observatories will monitor volumetric strain (via pore pressure as a proxy) and the evolution of physical, hydrological, and chemical properties throughout the SSE cycle. Together, the coring, logging, and observatory data will test a suite of hypotheses about the fundamental mechanics and behavior of SSEs and their relationship to great earthquakes along the subduction interface. 
    more » « less
  5. null (Ed.)
    Slow slip events (SSEs) at the northern Hikurangi subduction margin, New Zealand, are among the best-documented shallow SSEs on Earth. International Ocean Discovery Program Expeditions 372 and 375 were undertaken to investigate the processes and in situ conditions that underlie subduction zone SSEs at the northern Hikurangi Trough. We accomplished this goal by (1) coring and geophysical logging at four sites, including penetration of an active thrust fault (the Pāpaku fault) near the deformation front, the upper plate above the SSE source region, and the incoming sedimentary succession in the Hikurangi Trough and atop the Tūranganui Knoll seamount; and (2) installing borehole observatories in the Pāpaku fault and in the upper plate overlying the slow slip source region. Logging-while-drilling (LWD) data for this project were acquired as part of Expedition 372, and coring, wireline logging, and observatory installations were conducted during Expedition 375. Northern Hikurangi subduction margin SSEs recur every 1–2 y and thus provide an ideal opportunity to monitor deformation and associated changes in chemical and physical properties throughout the slow slip cycle. In situ measurements and sampling of material from the sedimentary section and oceanic basement of the subducting plate reveal the rock properties, composition, lithology, and structural character of material that is transported downdip into the SSE source region. A recent seafloor geodetic experiment raises the possibility that SSEs at northern Hikurangi may propagate to the trench, indicating that the shallow thrust fault (the Pāpaku fault) targeted during Expeditions 372 and 375 may also lie in the SSE rupture area and host a portion of the slip in these events. Hence, sampling and logging at this location provides insights into the composition, physical properties, and architecture of a shallow fault that may host slow slip. Expeditions 372 and 375 were designed to address three fundamental scientific objectives: 1. Characterize the state and composition of the incoming plate and shallow fault near the trench, which comprise the protolith and initial conditions for fault zone rock at greater depth and which may itself host shallow slow slip; 2. Characterize material properties, thermal regime, and stress conditions in the upper plate directly above the SSE source region; and 3. Install observatories in the Pāpaku fault near the deformation front and in the upper plate above the SSE source to measure temporal variations in deformation, temperature, and fluid flow. The observatories will monitor volumetric strain (via pore pressure as a proxy) and the evolution of physical, hydrological, and chemical properties throughout the SSE cycle. Together, the coring, logging, and observatory data will test a suite of hypotheses about the fundamental mechanics and behavior of SSEs and their relationship to great earthquakes along the subduction interface. 
    more » « less