Modern chemical science and industries critically depend on the application of various catalytic methods. However, the underlying molecular mechanisms of these processes still remain not fully understood. Recent experimental advances that produced highly-efficient nanoparticle catalysts allowed researchers to obtain more quantitative descriptions, opening the way to clarify the microscopic picture of catalysis. Stimulated by these developments, we present a minimal theoretical model that investigates the effect of heterogeneity in catalytic processes at the single-particle level. Using a discrete-state stochastic framework that accounts for the most relevant chemical transitions, we explicitly evaluated the dynamics of chemical reactions on single heterogeneous nanocatalysts with different types of active sites. It is found that the degree of stochastic noise in nanoparticle catalytic systems depends on several factors that include the heterogeneity of catalytic efficiencies of active sites and distinctions between chemical mechanisms on different active sites. The proposed theoretical approach provides a single-molecule view of heterogeneous catalysis and also suggests possible quantitative routes to clarify some important molecular details of nanocatalysts.
more »
« less
Site heterogeneity and broad surface-binding isotherms in modern catalysis: Building intuition beyond the Sabatier principle
Learning the science of heterogeneous catalysis and electrocatalysis always starts with the simple case of a flat, uniform sur-face with an ideal adsorbate. It has of course been recognized for a century that real catalysts are more complicated. For the increasingly complex catalysts of the 21st century, this Perspective argues that surface heterogeneity and non-ideal binding isotherms are central features, and their implications need to be incorporated in current thinking. A variety of systems are described herein where catalyst complexity leads to broad, non-Langmuirian surface isotherms for the binding of hydrogen atoms – and this occurs even for ideal, flat Pt(111) surfaces. Modern catalysis employs nanoscale materials whose surfaces have substantial step, edge, corner, impurity, and other defect sites, and they increasingly have both metallic and non-metallic elements MnXm, including metal oxides, chalcogenides, pnictides, carbides, doped carbons, etc. The surfaces of such catalysts are often not crystal facets of the bulk phase underneath, and they typically have a variety of potential active sites. Catalytic surfaces in operando are often non-stoichiometric, amorphous, dynamic, and impure, and often vary from one part of the surface to another. Understanding of the issues that arise at such nanoscale, multi-element catalysts is just beginning to emerge. Yet these catalysts are widely discussed using Brønsted/Bell-Evans-Polanyi (BEP) relations, volcano plots, Tafel slopes, the Butler-Volmer equation, and other linear free energy relations (LFERs), which all depend on the implicit assump-tion that the active sites are all “similar” and that surface adsorption is close to ideal. These assumptions underly the ubiqui-tous intuition based on the Sabatier Principle, that the fastest catalysis will occur when key intermediates have free energies of adsorption that are not too strong nor too weak. Current catalysis research often aims to minimize the complexity of non-ideal isotherms through experimental and computational design (e.g., the use of single crystal surfaces), and these studies are the foundation of the field. In contrast, this Perspective argues that the heterogeneity of binding sites and binding energies is an inherent strength of these catalysts. This diversity makes many nanoscale catalysts inherently a high-throughput screen wrapped in a tiny package. Only by making the heterogeneity part of the foundation of catalysis models, sorting the types of active sites and dissecting non-ideal binding isotherms, will modern catalysis learn to harness the inherent diversity of real catalysts. Controlling rather than avoiding diversity is needed to optimize complex modern catalysts and catalytic condi-tions.
more »
« less
- PAR ID:
- 10630336
- Editor(s):
- Mayer, James M
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of Catalysis
- Volume:
- 439
- ISSN:
- 0021-9517
- Page Range / eLocation ID:
- 115725
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Chemical heterogeneity on biomaterial surfaces can transform its interfacial properties, rendering nanoscale heterogeneity profoundly consequential during bioadhesion. To examine the role played by chemical heterogeneity in the adsorption of viruses on synthetic surfaces, a range of novel coatings is developed wherein a tunable mixture of electrostatic tethers for viral binding, and carbohydrate brushes, bearing pendant α‐mannose, β‐galactose, or β‐glucose groups, is incorporated. The effects of binding site density, brush composition, and brush architecture on viral adsorption, with the goal of formulating design specifications for virus‐resistant coatings are experimentally evaluated. It is concluded that virus‐coating interactions are shaped by the interplay between brush architecture and binding site density, after quantifying the adsorption of adenoviruses, influenza, and fibrinogen on a library of carbohydrate brushes co‐immobilized with different ratios of binding sites. These insights will be of utility in guiding the design of polymer coatings in realistic settings where they will be populated with defects.more » « less
-
Abstract Single-atom catalysts (SACs) offer efficient metal utilization and distinct reactivity compared to supported metal nanoparticles. Structure-function relationships for SACs often assume that active sites have uniform coordination environments at particular binding sites on support surfaces. Here, we investigate the distribution of coordination environments of Pt SAs dispersed on shape-controlled anatase TiO2supports specifically exposing (001) and (101) surfaces. Pt SAs on (101) are found on the surface, consistent with existing structural models, whereas those on (001) are beneath the surface after calcination. Pt SAs under (001) surfaces exhibit lower reactivity for CO oxidation than those on (101) surfaces due to their limited accessibility to gas phase species. Pt SAs deposited on commercial-TiO2are found both at the surface and in the bulk, posing challenges to structure-function relationship development. This study highlights heterogeneity in SA coordination environments on oxide supports, emphasizing a previously overlooked consideration in the design of SACs.more » « less
-
The aim of this work is to enhance the understanding of the pore structure and adsorption properties of kerogens as applied to organic-rich shales and mudstone rocks. Conventional methods of adsorption characterization from low temperature N2 isotherms rely on the use of the so-called standard isotherms on nonporous substrates (typically silica or amorphous carbons), which may not be accurate for the surfaces of kerogens. In this work, we present a new methodology for pore size characterization of kerogens that relies on a realistic molecular model of kerogen surfaces. Taking advantage of recent advances in modeling the molecular structure of kerogens, we create atomistic three-dimensional (3D) models of amorphous bulk kerogens, rough kerogen surfaces, and mesopores imbedded in the amorphous kerogen matrix. Using grand canonical Monte Carlo (GCMC) simulations, we calculate the reference N2 adsorption isotherms in the micropores of the bulk kerogen matrix, on the kerogen surface, as well as in a series of mesopores confined by rough kerogen walls. Next, we parameterized the quenched solid density functional theory (QSDFT) to reproduce the kerogen surface heterogeneity and GCMC-simulated N2 adsorption isotherms. Furthermore, we approximated the isotherm on the reference kerogen surface by a macroscopic disjoining pressure isotherm, which allows us to use the Derjaguin−Broekhoff−de Boer (DBdB) model to predict adsorption and capillary condensation in meso/macropores. The reference GCMC, QSDFT, and DBdB isotherms are combined into the kernel for calculating the micropore volume, meso- and macropore surfaces, and mesopore size distribution from the experimental adsorption isotherms. The proposed methodology is demonstrated on a typical example of a kerogen II-A sample with a wide mesopore size distribution. The methodology can be extended to other kerogen structures of different maturities to provide a comprehensive characterization of organic porosity in kerogen fractions.more » « less
-
Rational design and synthesis of efficient catalysts for electrochemical CO 2 reduction is a critical step towards practical CO 2 electrolyzer systems. In this work, we report a strategy to tune the catalytic property of a metallic Pd catalyst by coating its surface with a polydiallyldimethyl ammonium (PDDA) polymer layer. The resulting PDDA-functionalized Pd/C catalysts exhibit an enhanced CO faradaic efficiency of ∼93% together with a current density of 300 mA cm −2 at −0.65 V versus reversible hydrogen electrode in comparison to non-functionalized and commercial Pd/C catalysts. X-ray photoelectron spectroscopy analysis reveals that the improvement can be attributed to the electron transfer from the quaternary ammonium groups of PDDA to Pd nanoparticles, weakening the CO binding energy on Pd. The weak CO adsorption on Pd was further confirmed by the CO temperature programmed desorption measurement and operando attenuated total reflection-Fourier-transform infrared analysis. Therefore, the incorporation of electron-donating groups could be an effective strategy to decrease the CO binding energy of a metallic catalyst for a high CO selectivity in CO 2 electroreduction.more » « less
An official website of the United States government

