skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Geometric Tracking Control of Omnidirectional Multirotors for Aggressive Maneuvers
An omnidirectional multirotor has the maneuverability of decoupled translational and rotational motions, superseding the traditional multirotors' motion capability. Such maneuverability is achieved due to the ability of the omnidirectional multirotor to frequently alter the thrust amplitude and direction. In doing so, the rotors' settling time, which is induced by inherent rotor dynamics, significantly affects the omnidirectional multirotor's tracking performance, especially in aggressive flights. To resolve this issue, we propose a novel tracking controller that takes the rotor dynamics into account and does not require additional rotor state measurement. This is achieved by integrating a linear rotor dynamics model into the vehicle's equations of motion and designing a PD controller to compensate for the effects introduced by rotor dynamics. We prove that the proposed controller yields almost global exponential stability. The proposed controller is validated in experiments, where we demonstrate significantly improved tracking performance in multiple aggressive maneuvers compared with a baseline geometric PD controller.  more » « less
Award ID(s):
2431216
PAR ID:
10630389
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE Robotics and Automation Letters
Date Published:
Journal Name:
IEEE Robotics and Automation Letters
Volume:
10
Issue:
2
ISSN:
2377-3774
Page Range / eLocation ID:
1130 to 1137
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Using the context of trajectory estimation and tracking for multirotor unmanned aerial vehicles (UAVs), we explore the challenges in applying high-gain observers to highly dynamic systems. The multirotor will operate in the presence of external disturbances and modeling errors. At the same time, the reference trajectory is unknown and generated from a reference system with unknown or partially known dynamics. We assume the only measurements that are available are the position and orientation of the multirotor and the position of the reference system. We adopt an extended high-gain observer (EHGO) estimation framework to estimate the unmeasured multirotor states, modeling errors, external disturbances, and the reference trajectory. We design a robust output feedback controller for trajectory tracking that comprises a feedback linearizing controller and the EHGO. The proposed control method is rigorously analyzed to establish its stability properties. Finally, we illustrate our theoretical results through numerical simulation and experimental validation in which a multirotor tracks a moving ground vehicle with an unknown trajectory and dynamics and successfully lands on the vehicle while in motion. 
    more » « less
  2. This work proposes a two-degree of freedom (2DOF) controller for motion tracking of nanopositioning devices, such as piezoelectric actuators (PEAs), with a broad bandwidth and high precision. The proposed 2DOF controller consists of an inversion feedforward controller and a real-time feedback controller. The feedforward controller, a sequence-to-sequence LSTM-based inversion model (invLSTMs2s), is used to compensate for the nonlinearity of the PEA, especially at high frequencies, and is collaboratively integrated with a linear MPC feedback controller, which ensures the PEA position tracking performance at low frequencies. Therefore, the proposed 2DOF controller, namely, invLSTMs2s+MPC, is able to achieve high precision over a broad bandwidth. To validate the proposed controller, the uncertainty of invLSTMs2s is checked such that the integration of an inversion model-based feedforward controller has a positive impact on the trajectory tracking performance compared to feedback control only. Experimental validation on a commercial PEA and comparison with existing approaches demonstrate that high tracking accuracies can be achieved by invLSTMs2s+MPC for various reference trajectories. Moreover, invLSTMs2s+MPC is further demonstrated on a multi-dimensional PEA platform for simultaneous multi-direction positioning control. 
    more » « less
  3. To broaden and promote the applications of unmanned aerial vehicles (UAVs), UAVs with agile and omnidirectional mobility enabled by full or over actuation are a growing field of research. However, the balance of motion agility and force (energy) efficiency is challenging for a fixed UAV structure. This paper presents the new design of a transformable UAV, which can operate as a coplanar hexacopter or as an omnidirectional multirotor based on different operation modes. The UAV has 100% force efficiency for launching or landing tasks in the coplanar mode. In the omnidirectional mode, the UAV is fully actuated in the air for agile mobility in six degrees of freedom (DOFs). Models and control design are developed to characterize the motion of the transformable UAV. Simulation results are presented to validate the transformable UAV design and the enhanced UAV performance, compared with a fixed structure. 
    more » « less
  4. null (Ed.)
    This paper presents a multirotor control architecture, where Model Predictive Path Integral Control (MPPI) and ℒ 1 adaptive control are combined to achieve both fast model predictive trajectory planning and robust trajectory tracking. MPPI provides a framework to solve nonlinear MPC with complex cost functions in real-time. However, it often lacks robustness, especially when the simulated dynamics are different from the true dynamics. We show that the ℒ 1 adaptive controller robustifies the architecture, allowing the overall system to behave similar to the nominal system simulated with MPPI. The architecture is validated in a simulated multirotor racing environment. 
    more » « less
  5. Improved integration of wind farms into frequency regulation services is vital for increasing renewable energy production while ensuring power system stability. This work generalizes a recently proposed model-based receding horizon wind farm controller for secondary frequency regulation to arbitrary wind farm layouts and augments the controller to enable power modulation through storage of kinetic energy in the rotor. The new design explicitly includes actuation of blade pitch and generator torque, which facilitates implementation in existing farms as it takes advantage of current wind turbine control loops. This generalized control design improves control authority by individually controlling each turbine and using kinetic energy stored in the rotor in a coordinated manner to achieve farm level control goals. Numerical results demonstrate the effectiveness of this approach; in particular, the controller achieves accurate power tracking and reduces loss of revenue in the bulk power market by requiring less setpoint reduction (derate) than the power level control range. 
    more » « less