This data set covers the Anaktuvuk River fire site and maps drained lake basins in this area as described by Jones et al (2015). The data set is derived from airborne Light Detection and Ranging (LiDAR) data acquired in 2009 and 2014. The classification of drained lake basins is based on digital terrain models (DTMs) created from the classified LiDAR data and using the a topographic position index (TPI). The TPI output was manually categorized relative to existing surficial geology maps and refined into the following terrain units: (1) drained lake basins, (2) yedoma uplands, (3) rocky uplands, (4) glaciated upland, (5) river floodplain and (6) tundra stream gulches. The drained lake basin class is the subject of this data set publication. Jones, B., Grosse, G., Arp, C. et al. Recent Arctic tundra fire initiates widespread thermokarst development. Sci Rep 5, 15865 (2015). https://doi.org/10.1038/srep15865
more »
« less
This content will become publicly available on June 1, 2026
Impacts of geographic variability and geologic history on the distribution of post-settlement alluvium (PSA) across the upper Midwest, USA
Accelerated floodplain sedimentation related to agricultural development of uplands has produced postsettlement alluvium (PSA) along rivers throughout the upper Midwest, U.S.A. Landscape characteristics, surficial sediments, and soils in the region vary geographically in relation to differences in geologic history, yet the extent to which this geographic variability influences PSA accumulation remains unexplored. This study uses existing data to assess how non-dimensional PSA thickness varies with landscape characteristics, surficial sediments, soils and climate. Geographic variability is associated with three subregions: 1) areas glaciated during the Late Wisconsin Episode (LWE), 2) areas glaciated during Pre-Illinois and Illinois Episodes (PI&IE), and 3) the Paleozoic Plateau (PP), an area where evidence of Quaternary glaciation is highly localized and does not influence geomorphic characteristics of the landscape. These subregions differ significantly in average geomorphic characteristics, including mean watershed slope (WS), mean local relief (LR), fraction of non-contributing area (NCA), pre-settlement drainage density (DD), and mean normalized river steepness (KSN). Native vegetation type also differs systematically between the subregions, creating significant differences in the frequency of alfisols (Alfi) and molisols (Mol). Thickness of last glacial loess (Loess) also varies across the region, although not systematically between the subregions identified. Non-dimensional PSA thickness differs significantly among the subregions, increasing systematically with landscape age, reflecting faster upland erosion rates and stronger connectivity of uplands to river corridors in older landscapes relative to more recently glaciated landscapes. Nondimensional PSA thickness is significantly positively correlated with LR, KSN, WS, Loess, Alfi, and Mol and significantly negatively correlated with NCA. Non-visibly distinct PSA is present in some LWE watersheds characterized by significantly lower KSN and WS relative to other LWE watersheds in which PSA is visibly distinct. PSA thickness and visibility reflect catchment-wide landscape characteristics and watershed-scale river steepness, which emphasize the importance of geographic setting, geological history, and landscape geomorphic characteristics for understanding historical river sediment dynamics. Spatial variability in PSA thickness also serves as an indicator of river system sensitivity to land-use change, providing insight into the relative impact of humans on rivers within different geographic settings.
more »
« less
- Award ID(s):
- 2012850
- PAR ID:
- 10630770
- Editor(s):
- NA
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- CATENA
- Volume:
- 254
- Issue:
- C
- ISSN:
- 0341-8162
- Page Range / eLocation ID:
- 108939
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This data set covers the Anaktuvuk River fire site and maps drained lake basins in this area as described by Jones et al (2015). The data set is derived from airborne Light Detection and Ranging (LiDAR) data acquired in 2009 and 2014. The classification of drained lake basins is based on digital terrain models (DTMs) created from the classified LiDAR data and using the a topographic position index (TPI). The TPI output was manually categorized relative to existing surficial geology maps and refined into the following terrain units: (1) drained lake basins, (2) yedoma uplands, (3) rocky uplands, (4) glaciated upland, (5) river floodplain and (6) tundra stream gulches. The drained lake basin class is the subject of this data set publication. Jones, B., Grosse, G., Arp, C. et al. Recent Arctic tundra fire initiates widespread thermokarst development. Sci Rep 5, 15865 (2015). https://doi.org/10.1038/srep15865more » « less
-
Landscape dissection by rivers is a common qualitative measure of surface maturity. Quantitative studies of fluvial development over time indicate that drainage development increases non-linearly and is influenced by lithology, however, these studies typically take place over short timescales (10s of years), cover small areas, and focus on steep landscapes. In this work we use the Central Lowlands physiographic province (CL) as a natural laboratory in which we investigate rates and controls on drainage development in a post-glacial lowland landscape. Portions of the CL have been glaciated repeatedly in the Quaternary, and its topography is dominated by a patchwork of glacial landforms that have been developing drainage for 10 thousand to more than 500 thousand years. We modify the National Hydrography Dataset to estimate pre-agriculture drainage density developed over different amounts of time to reveal rates of drainage development in the CL. We find that drainage density in the CL increases non-linearly, increasing rapidly following glaciation before slowly approaching a maximum value. Much of the development is accomplished by 50 ka, well within a typical interglacial period. The apparent maximum value, ~1.5 km/km2, is comparable to the median drainage density measured in regions in the CL that have not experienced Quaternary glaciation. Our study shows that this value is likely influenced by soil sand content and regional precipitation levels. We note that while drainage density increases to an apparent maximum within an interglacial, the fluvial network is unlikely to adjust to post-glacial base level conditions within that same length of time. Our results are most consistent with a model of drainage expansion driven by the connection of closed depressions, or ‘non-contributing area’ (NCA), the portion of a watershed that does not drain to a river. We find that NCA decreases in tandem with increasing drainage density, which implies that NCA could be a measure of landscape integration that is at least as sensitive as drainage density.more » « less
-
We explore how rock properties and channel morphology vary with rock type in Last Chance Canyon, Guadalupe Mountains, New Mexico, USA. The rocks here are composed of horizontally to near-horizontally interbedded carbonate and sandstone. This study focuses on first- and second-order channel sections, where the streams have a lower channel steepness index (ksn) upstream and transition to higher ksn values downstream. We hypothesize that differences in bed thickness and rock strength influence ksn values, both locally by influencing bulk bedrock strength and also nonlocally through the production of coarse sediment. We collected discontinuity intensity data (the length of bedding planes and fractures per unit area), Schmidt hammer rebound measurements, and measured the largest boulder at every 12.2 m elevation contour to test this hypothesis. Bedrock and boulder mineralogy were determined using a lab-based carbonate dissolution method. High-resolution orthomosaics and digital surface models (DSMs) were generated from drone and ground-based photogrammetry. The orthomosaics were used to map channel sections with exposed bedrock. The United States Geological Survey (USGS) 10 m digital elevation models (DEMs) were used to measure channel slope and hillslope relief. We find that discontinuity intensity is negatively correlated with Schmidt hammer rebound values in sandstone bedrock. Channel steepness tends to be higher where reaches are primarily incising through more thickly bedded carbonate bedrock and lower where more thinly bedded sandstone is exposed. Bedrock properties also influence channel morphology indirectly, through coarse sediment input from adjacent hillslopes. Thickly bedded rock layers on hillslopes erode to contribute larger colluvial sediment to adjacent channels, and these reaches have higher ksn values. Larger and more competent carbonate sediment armors both the carbonate and the more erodible sandstone and reduces steepness contrasts across rock types. We interpret that in the relatively steep, high-level ksn downstream channel sections, the slope is primarily controlled by the coarse alluvial cover. We further posit that the upstream low-level ksn reaches have a base level that is fixed by the steep downstream reaches, resulting in a stable configuration, where channel slopes have adjusted to lithologic differences and/or sediment armor.more » « less
-
Abstract Erosional perturbations from changes in climate or tectonics are recorded in the profiles of bedrock rivers, but these signals can be challenging to unravel in settings with non‐uniform lithology. In layered rocks, the surface lithology at a given location varies through time as erosion exposes different layers of rock. Recent modeling studies have used the Stream Power Model (SPM) to highlight complex variations in erosion rates that arise in bedrock rivers incising through layered rocks. However, these studies do not capture the effects of coarse sediment cover on channel evolution. We use the “Stream Power with Alluvium Conservation and Entrainment” (SPACE) model to explore how sediment cover influences landscape evolution and modulates the topographic expression of erodibility contrasts in horizontally layered rocks. We simulate river evolution through alternating layers of hard and soft rock over million‐year timescales with a constant and uniform uplift rate. Compared to the SPM, model runs with sediment cover have systematically higher channel steepness values in soft rock layers and lower channel steepness values in hard rock layers. As more sediment accumulates, the contrast in steepness between the two rock types decreases. Effective bedrock erodibilities back‐calculated assuming the SPM are strongly influenced by sediment cover. We also find that sediment cover can significantly increase total relief and timescales of adjustment toward landscape‐averaged steady‐state topography and erosion rates.more » « less
An official website of the United States government
