Abstract Meandering river floodplains often contain intermittently flooded complex channel networks. Many questions remain as to the pervasiveness, function, and evolution of these floodplain channels. In this present work, we analyzed size‐specific sediment transport potential and assessed whether the channelized floodplain of the meandering East Fork White River near Seymour, Indiana is on a net erosional or depositional trajectory. We applied a two‐dimensional hydrodynamic model and used simulated model results to estimate the largest sediment size that can be moved in suspension and as bedload at various flows for grain size classes between 4 µm and 64 mm. We developed a probabilistic method that integrates the largest sediment size that can be moved at various flows to compute an effective grain size, which we compared to measured field data. Results show that the river is capable of supplying sand to the floodplain and these floodplain channels can transport sand in suspension and gravel as bedload. This suggests that sediment supplied from the river could be transported as bedload in floodplain channels. These floodplain channels are supply limited under the current hydrologic regime and the grain size distribution of the bed surface is set by the flow conditions; thus, these floodplain channels are net erosional. Finally, our proposed method of probabilistically integrating the largest sediment size that can be moved at various flows can be used to predict the upper end of the grain size distribution in suspension and in bed material, which is applicable to floodplains as well as coastal areas.
more »
« less
Form and Function of Floodplain Secondary Channels in a Lowland Meandering River System
Abstract Relatively little is known about the geomorphological characteristics of floodplain secondary channels and the potential for floodplain flows to mobilize bed material within these channels. This study examines the geomorphological characteristics (channel form, material properties, wood jams) and bed‐material mobilization potential of secondary channels on the floodplain of a meandering river in Illinois, USA. It also compares these attributes to those of the main channel. Results show that secondary channels are at most about one‐third the size of the main channel but also vary in size over distance. Channel dimensions tend to be greatest near the proximal connection of secondary channels to the main channel, suggesting that flow from the main channel is effective in producing scour where it enters secondary channels. The beds of secondary channels consist mainly of mud in contrast to sand and gravel on the bed of the main channel, implying that secondary channels do not convey bed material from the main channel onto the floodplain. Secondary channels connected to the main channel at both ends have more abundant active wood jams than those connected only at the proximal end. Flow from the main channel enters secondary channels at sub‐bankfull stages, but maximum mobilization of cohesive bed material in secondary channels only occurs during flows that exceed the average bankfull stage in the main channel. Overall, secondary channels are active conduits of flow, sediment, and large wood on floodplains and can contribute to floodplain sediment fluxes through entrainment of bed material.
more »
« less
- Award ID(s):
- 2012850
- PAR ID:
- 10630777
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 130
- Issue:
- 1
- ISSN:
- 2169-9003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Equilibrium geometry of single‐thread rivers with fixed width (engineered rivers) is determined with a flow resistance relation and a sediment transport relation, if characteristic discharge, sediment caliber and supply are specified. In self‐formed channels, however, channel width is not imposed, and one more relation is needed to predict equilibrium geometry. Specifying this relation remains an open problem. Here we present a new model that brings together a coherent train of research progress over 35 years to predict equilibrium geometry of single‐thread rivers from the conservation of channel and floodplain material. Predicted channel geometries are comparable with field observations. In response to increasing floodplain width, sand load and grain size, the equilibrium slope increases, bankfull depth and width decrease. As the volume fraction content of mud in the sediment load increases, bankfull width‐to‐depth ratio and slope decrease suggesting that mud load has a strong control on channel patterns and bankfull geometry.more » « less
-
Abstract Floodplains provide important ecological, hydrological, and geomorphic functions within river corridors. During overbank flows, complex hydrodynamic conditions occur as water exits and re‐enters the channel and interacts with hydraulically rough floodplain vegetation. However, the extent to which floodplain vegetation influences channel‐altering hydrodynamic forces and thus bedform topography and sediment transport is poorly understood. We address this knowledge gap and present the results of flume experiments where we measured bedform topography under varied floodplain vegetation conditions at two overbank flow relative depths. The experiments were conducted in a 1‐m wide meandering compound channel inset in a 15.4 long, 4.9‐m wide basin. The channel bed was a mobile sand‐and‐gravel mixture with a median sediment size of 3.3 mm, and sediment transport occurred only within the channel. We tested bare and vegetated floodplain conditions with 2.7‐cm diameter rigid emergent vegetation elements at spacings of 3.0 and 12.1 units m−2. We performed a moving‐window analysis of topographic surface metrics including skewness, coefficient of variation, and standard deviation, as well as topographic patch analysis of area and contagion to measure changes in bedform heterogeneity as flow depth and vegetation density were varied. Our results show that both greater density vegetation and larger flows can increase bedform topographic heterogeneity. These findings suggest that floodplain vegetation and natural hydrologic regimes that include overbank flows can enhance stream habitat complexity. Designing for the effects of established vegetation conditions and prioritizing floodplain vegetation planting may be useful for river managers striving to achieve successful biomic river restoration.more » « less
-
Abstract Mutual adjustment between process and form shapes the morphology of alluvial river channels, including channel banks. The tops of banks define the transition between the channel and adjacent floodplain, which corresponds to the level of incipient flooding. Despite the geomorphological and hydrological importance of this transition, few, if any, studies have extensively examined spatial variability in bank elevations and its influence on bankfull stage. This study uses an objective method to explore this variability at two spatial resolutions along three alluvial lowland meandering rivers. Results show that variability in bankfull stage is inherent to all three rivers. The mean variability of bankfull stage about the average downstream gradient in this stage is 10% to 20% of mean bankfull depth. Elevations of channel banks exhibit similar variability, even after accounting for systematic variations in heights of inner and outer banks associated with river meandering. Two‐dimensional hydraulic simulations show that the elevation range of mean variability in bankfull stage overlaps considerably with the elevation range of high curvature on rating curves, confirming that variability in bankfull stage influences the shape of these curves. The simulations verify that breaks in channel banks allow flow to extend onto the floodplain at stages below the average bankfull stage. The findings provide fundamental insight into the variable nature of bankfull conditions along meandering rivers and the role of this variability in channel‐floodplain connectivity. The results also inform river‐restoration efforts that seek to re‐establish the natural configuration of channel banks.more » « less
-
Abstract Natural levees form through sediment delivery from channels, dispersal onto floodplains, and storage at channel margins. When levees breach, they release water and sediment onto the floodplain, occasionally causing river avulsions. Despite their significance, levee growth remains poorly understood, and no existing models capture the dynamic channel‐levee evolution systems. A common assumption is that levee and channel bed aggradation rates are coupled or equal; however, this cannot be true because levees do not accumulate everywhere along aggrading channel belts. Using a one‐dimensional numerical model, we investigate levee growth decoupled from channel bed aggradation under flood scenarios wherein the flooded level: (a) exceeds the levee crest height (i.e., front loading); or (b) is lower than the levee crest partially inundating distal levee deposits (i.e., back loading). Front loading events initially aggrade the levee crest, which confines the channel, increases bankfull depth, and reduces flooding. During confinement, levee growth restricts flooding, and minor back loading events are more common. Over this period, the channel bed aggrades until bankfull depth decreases sufficiently to trigger larger floods. This channel‐releasing process increases flood likelihood and enhances overbank accumulation, promoting front loading and re‐confining the channel. Our findings suggest aggradational channels may experience confined‐release phases characterized by episodic levee growth and fluctuating bankfull depth. Rapid in‐channel aggradation increases flood frequency and variability with more confined‐release cycles. These results imply that river avulsions and associated floods might preferentially occur when the channel bed aggrades faster than adjacent levees, whereby the channel becomes shallower and destabilized.more » « less
An official website of the United States government

