Abstract On 2022 February 15, an impressive filament eruption was observed off the solar eastern limb from three remote-sensing viewpoints, namely, Earth, STEREO-A, and Solar Orbiter. In addition to representing the most-distant observed filament at extreme ultraviolet wavelengths—captured by Solar Orbiter's field of view extending to above 6R⊙—this event was also associated with the release of a fast (∼2200 km s−1) coronal mass ejection (CME) that was directed toward BepiColombo and Parker Solar Probe. These two probes were separated by 2° in latitude, 4° in longitude, and 0.03 au in radial distance around the time of the CME-driven shock arrival in situ. The relative proximity of the two probes to each other and the Sun (∼0.35 au) allows us to study the mesoscale structure of CMEs at Mercury's orbit for the first time. We analyze similarities and differences in the main CME-related structures measured at the two locations, namely, the interplanetary shock, the sheath region, and the magnetic ejecta. We find that, despite the separation between the two spacecraft being well within the typical uncertainties associated with determination of CME geometric parameters from remote-sensing observations, the two sets of in situ measurements display some profound differences that make understanding the overall 3D CME structure particularly challenging. Finally, we discuss our findings within the context of space weather at Mercury's distance and in terms of the need to investigate solar transients via spacecraft constellations with small separations, which has been gaining significant attention during recent years. 
                        more » 
                        « less   
                    This content will become publicly available on July 4, 2026
                            
                            On the Accuracy and Uncertainty of Coronal Mass Ejection 3D Reconstructions Depending on the Number of Viewpoints in the Heliosphere
                        
                    
    
            Abstract This paper presents a systematic study that focuses on how the number of viewpoints distributed in the heliosphere affects the accuracy and uncertainty of the 3D geometric coronal mass ejection (CME) measurements. An efficient nonmanual minimization-based fitting technique that is different from the manual methods widely used in the community is developed. It uses the MPFIT minimization IDL routine and searches for the optimized model point clouds that best fit the observed CME leading edges from one, two, or three viewpoints using a set of combinations of observations provided by the Solar Terrestrial Relations Observatory and Solar and Heliospheric Observatory. The technique also provides a robust calculation of uncertainties of the CME geometric parameters that is lacking in manual methods. Three well-known geometric models, the cone, graduated cylindrical shell, and spheroid shock, are used. All three models depend on geometric parameters that govern the CME propagation direction and size. Sample cases of a halo, partial halo, and limb CMEs as seen from the Earth are used in the fitting and uncertainty calculation. It is found that, after adding a second viewpoint off the Sun–Earth line, the uncertainties drop significantly, while the addition of the third viewpoint adds limited benefits. This study shows that the minimization fitting method provides a robust, fast, and straightforward way to define the CME geometric parameters along with their uncertainties for individual events, which shall provide the necessary data constraints for ensemble predictions of CME evolution. It also underlines the importance of having a permanent observatory off the Sun–Earth line for operational space weather prediction. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2418236
- PAR ID:
- 10630833
- Publisher / Repository:
- IOP Publishing for the American Astronomical Society
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 987
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 157
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Graduated Cylindrical Shell (GCS) model is a widely used tool to determine direction, kinematic and orientation properties of Coronal Mass Ejections (CME) using multi-viewpoint observations from SOHO and STEREO A&B coronagraphs. In this study, we estimate the subjective uncertainties typically seen while deriving these CME properties by comparing the GCS model results reported in multiple studies and catalogs for 56 CMEs. We find that the GCS estimates of latitude, longitude, and tilt show an average uncertainty of 5.7, 11.2, and 24.7 degrees with standard deviation of 5.5, 12.7, and 19.7 degrees respectively. We found that the uncertainties in estimated latitudes are correlated with uncertainties in estimated longitude, tilt, and speed, showing that some CMEs are inherently difficult to fit than others. We then introduced these uncertainty values in our 3-D magnetohydrodynamic flux rope based modified spheromak CME model to figure out their consequences for space weather prediction. We find that much better CME observations are required to reliably predict magnetic field of CMEs at 1 AU using flux rope based models, since the uncertainties in estimated GCS values can result in large differences in 1 AU signatures, especially for CMEs launched away from the Sun-Earth line.more » « less
- 
            Abstract Stealth coronal mass ejections (CMEs) are eruptions from the Sun that are not associated with appreciable low-coronal signatures. Because they often cannot be linked to a well-defined source region on the Sun, analysis of their initial magnetic configuration and eruption dynamics is particularly problematic. In this article, we address this issue by undertaking the first attempt at predicting the magnetic fields of a stealth CME that erupted in 2020 June from the Earth-facing Sun. We estimate its source region with the aid of off-limb observations from a secondary viewpoint and photospheric magnetic field extrapolations. We then employ the Open Solar Physics Rapid Ensemble Information modeling suite to evaluate its early evolution and forward model its magnetic fields up to Parker Solar Probe, which detected the CME in situ at a heliocentric distance of 0.5 au. We compare our hindcast prediction with in situ measurements and a set of flux-rope reconstructions, obtaining encouraging agreement on arrival time, spacecraft-crossing location, and magnetic field profiles. This work represents a first step toward reliable understanding and forecasting of the magnetic configuration of stealth CMEs and slow streamer-blowout events.more » « less
- 
            Abstract Forecasting the arrival time of Earth‐directed coronal mass ejections (CMEs) via physics‐based simulations is an essential but challenging task in space weather research due to the complexity of the underlying physics and limited remote and in situ observations of these events. Data assimilation techniques can assist in constraining free model parameters and reduce the uncertainty in subsequent model predictions. In this study, we show that CME simulations conducted with the Space Weather Modeling Framework (SWMF) can be assimilated with SOHO LASCO white‐light (WL) observations and solar wind observations at L1 prior to the CME eruption to improve the prediction of CME arrival time. The L1 observations are used to constrain the model of the solar wind background into which the CME is launched. Average speed of CME shock front over propagation angles are extracted from both synthetic WL images from the Alfvén Wave Solar atmosphere Model (AWSoM) and the WL observations. We observe a strong rank correlation between the average WL speed and CME arrival time, with the Spearman's rank correlation coefficients larger than 0.90 for three events occurring during different phases of the solar cycle. This enables us to develop a Bayesian framework to filter ensemble simulations using WL observations, which is found to reduce the mean absolute error of CME arrival time prediction from about 13.4 to 5.1 hr. The results show the potential of assimilating readily available L1 and WL observations within hours of the CME eruption to construct optimal ensembles of Sun‐to‐Earth CME simulations.more » « less
- 
            Abstract Modeling the impact of space weather events such as coronal mass ejections (CMEs) is crucial to protecting critical infrastructure. The Space Weather Modeling Framework is a state‐of‐the‐art framework that offers full Sun‐to‐Earth simulations by computing the background solar wind, CME propagation, and magnetospheric impact. However, reliable long‐term predictions of CME events require uncertainty quantification (UQ) and data assimilation. We take the first steps by performing global sensitivity analysis (GSA) and UQ for background solar wind simulations produced by the Alfvén Wave Solar atmosphere Model (AWSoM) for two Carrington rotations: CR2152 (solar maximum) and CR2208 (solar minimum). We conduct GSA by computing Sobol' indices that quantify contributions from model parameter uncertainty to the variance of solar wind speed and density at 1 au, both crucial quantities for CME propagation and strength. Sobol' indices also allow us to rank and retain only the most important parameters, which aids in the construction of smaller ensembles for the reduced‐dimension parameter space. We present an efficient procedure for computing the Sobol' indices using polynomial chaos expansion surrogates and space‐filling designs. The PCEs further enable inexpensive forward UQ. Overall, we identify three important model parameters: the multiplicative factor applied to the magnetogram, Poynting flux per magnetic field strength constant used at the inner boundary, and the coefficient of the perpendicular correlation length in the turbulent cascade model in AWSoM.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
