skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Mesoscale Structure of Coronal Mass Ejections at Mercury’s Orbit: BepiColombo and Parker Solar Probe Observations
Abstract On 2022 February 15, an impressive filament eruption was observed off the solar eastern limb from three remote-sensing viewpoints, namely, Earth, STEREO-A, and Solar Orbiter. In addition to representing the most-distant observed filament at extreme ultraviolet wavelengths—captured by Solar Orbiter's field of view extending to above 6R—this event was also associated with the release of a fast (∼2200 km s−1) coronal mass ejection (CME) that was directed toward BepiColombo and Parker Solar Probe. These two probes were separated by 2° in latitude, 4° in longitude, and 0.03 au in radial distance around the time of the CME-driven shock arrival in situ. The relative proximity of the two probes to each other and the Sun (∼0.35 au) allows us to study the mesoscale structure of CMEs at Mercury's orbit for the first time. We analyze similarities and differences in the main CME-related structures measured at the two locations, namely, the interplanetary shock, the sheath region, and the magnetic ejecta. We find that, despite the separation between the two spacecraft being well within the typical uncertainties associated with determination of CME geometric parameters from remote-sensing observations, the two sets of in situ measurements display some profound differences that make understanding the overall 3D CME structure particularly challenging. Finally, we discuss our findings within the context of space weather at Mercury's distance and in terms of the need to investigate solar transients via spacecraft constellations with small separations, which has been gaining significant attention during recent years.  more » « less
Award ID(s):
2147399
PAR ID:
10508046
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
AAS
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
963
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
108
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present an analysis of in situ and remote-sensing measurements of a coronal mass ejection (CME) that erupted on 2021 February 20 and impacted both the Solar TErrestrial RElations Observatory (STEREO)-A and the Wind spacecraft, which were separated longitudinally by 55°. Measurements on 2021 February 24 at both spacecraft are consistent with the passage of a magnetic ejecta (ME), making this one of the widest reported multispacecraft ME detections. The CME is associated with a low-inclined and wide filament eruption from the Sun’s southern hemisphere, which propagates between STEREO-A and Wind around E34. At STEREO-A, the measurements indicate the passage of a moderately fast (∼425 km s−1) shock-driving ME, occurring 2–3 days after the end of a high speed stream (HSS). At Wind, the measurements show a faster (∼490 km s−1) and much shorter ME, not preceded by a shock nor a sheath, and occurring inside the back portion of the HSS. The ME orientation measured at both spacecraft is consistent with a passage close to the legs of a curved flux rope. The short duration of the ME observed at Wind and the difference in the suprathermal electron pitch-angle data between the two spacecraft are the only results that do not satisfy common expectations. We discuss the consequence of these measurements on our understanding of the CME shape and extent and the lack of clear signatures of the interaction between the CME and the HSS. 
    more » « less
  2. Abstract Simultaneous in situ measurements of coronal mass ejections (CMEs), including both plasma and magnetic field, by two spacecraft in radial alignment have been extremely rare. Here, we report on one such CME measured by Solar Orbiter (SolO) and Wind on 2021 November 3–5, while the spacecraft were radially separated by a heliocentric distance of 0.13 au and angularly by only 2.2°. We focus on the magnetic cloud (MC) part of the CME. We find notable changes in theRandNmagnetic field components and in the speed profiles inside the MC between SolO and Wind. We observe a greater speed at the spacecraft farther away from the Sun without any clear compression signatures. Since the spacecraft are close to each other and computing fast magnetosonic wave speed inside the MC, we rule out temporal evolution as the reason for the observed differences, suggesting that spatial variations over 2.2° of the MC structure are at the heart of the observed discrepancies. Moreover, using shock properties at SolO, we forecast an arrival time 2 hr 30 minutes too late for a shock that is just 5 hr 31 minutes away from Wind. Predicting the north–south component of the magnetic field at Wind from SolO measurements leads to a relative error of 55%. These results show that even angular separations as low as 2.2° (or 0.03 au in arc length) between spacecraft can have a large impact on the observed CME properties, which raises the issue of the resolutions of current CME models, potentially affecting our forecasting capabilities. 
    more » « less
  3. Context.Predicting geomagnetic events starts with an understanding of the Sun-Earth chain phenomena in which (interplanetary) coronal mass ejections (CMEs) play an important role in bringing about intense geomagnetic storms. It is not always straightforward to determine the solar source of an interplanetary coronal mass ejection (ICME) detected at 1 au. Aims.The aim of this study is to test by a magnetohydrodynamic (MHD) simulation the chain of a series of CME events detected from L1 back to the Sun in order to determine the relationship between remote and in situ CMEs. Methods.We analysed both remote-sensing observations and in situ measurements of a well-defined magnetic cloud (MC) detected at L1 occurring on 28 June 2013. The MHD modelling is provided by the 3D MHD European Heliospheric FORecasting Information Asset (EUHFORIA) simulation model. Results.After computing the background solar wind, we tested the trajectories of six CMEs occurring in a time window of five days before a well-defined MC at L1 that may act as the candidate of the MC. We modelled each CME using the cone model. The test involving all the CMEs indicated that the main driver of the well-defined, long-duration MC was a slow CME. For the corresponding MC, we retrieved the arrival time and the observed proton density. Conclusions.EUHFORIA confirms the results obtained in the George Mason data catalogue concerning this chain of events. However, their proposed solar source of the CME is disputable. The slow CME at the origin of the MC could have its solar source in a small, emerging region at the border of a filament channel at latitude and longitude equal to +14 degrees. 
    more » « less
  4. Context.Coronal mass ejections (CMEs) are large-scale structures of magnetized plasma that erupt from the corona into interplanetary space. The launch of Solar Orbiter (SolO) in 2020 enables in situ measurements of CMEs in the innermost heliosphere, at such distances where CMEs can be observed remotely within the inner field of view of heliospheric imagers (HIs). It thus provides the opportunity for investigations into the correspondence of the CME substructures measured in situ and observed remotely. We studied a CME that started on 2022 March 10 and was measured in situ by SolO at ∼0.44 au. Aims.Combining remote observations of CMEs from wide-angle imagers and in situ measurements in the innermost heliosphere allows us to compare CME properties derived through both techniques, validate the estimates, and better understand CME evolution, specifically the size and radial expansion, within 0.5 au. Methods.We compared the evolution of different CME substructures observed in images from the HIs on board the Ahead Solar Terrestrial Relations Observatory (STEREO-A) and the CME signatures measured in situ by SolO. The CME is found to possess a density enhancement at its rear edge in both remote and in situ observations, which validates the use of the signature of density enhancement following the CMEs to accurately identify the CME rear edge. We also estimated and compared the radial size and radial expansion speed of different substructures in both observations. Results.The evolution of the CME front and rear edges in remote images is consistent with the in situ CME measurements. The radial expansion (i.e., radial size and radial expansion speed) of the whole CME structure consisting of the magnetic ejecta and the sheath is consistent with the in situ estimates obtained at the same time from SolO. However, we do not find such consistencies for the magnetic ejecta region inside the CME because it is difficult to identify the magnetic ejecta edges in the remote images. 
    more » « less
  5. Abstract Coronal pseudostreamer flux systems have a specific magnetic configuration that influences the morphology and evolution of coronal mass ejections (CMEs) from these regions. Here we continue the analysis of the Wyper et al. magnetohydrodynamic simulation of a CME eruption from an idealized pseudostreamer configuration through the construction of synthetic remote-sensing and in situ observational signatures. We examine the pre-eruption and eruption signatures in extreme ultraviolet and white light from the low corona through the extended solar atmosphere. We calculate synthetic observations corresponding to several Parker Solar Probe–like trajectories at ∼10Rto highlight the fine-scale structure of the CME eruption in synthetic WISPR imagery and the differences between the in situ plasma and field signatures of flank and central CME-encounter trajectories. Finally, we conclude with a discussion of several aspects of our simulation results in the context of interpretation and analysis of current and future Parker Solar Probe data. 
    more » « less